Podstawowe człony dynamiczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe człony dynamiczne"

Transkrypt

1 . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty () = + 6. Człon dwu-inercyjny -inercyjny drugiego rzędu aperiodyczny () = Człon inercyjny drugiego rzędu, człon oscylacyjny = = + 2 +

2 Człon proporcjonalny = L = = Wymuszenie skokowe Wymuszenie liniowe = = = = = L = = L = AK a) Im{s} AtiK b) A Re{s} t ti t Charakterystyki czasowe odpowiedzi członu proporcjonalnego przy K > poddanego wymuszeniu: a) skokowemu, b) liniowo narastającemu. 2

3 Człon całkujący = L = = Wymuszenie skokowe = = = L = Wymuszenie liniowe = = = L = 2 a) Im{s} b) 2 A Re{s} ti t ti t Charakterystyki czasowe odpowiedzi członu proporcjonalnego z całkowaniem przy K > poddanego wymuszeniu: a) skokowemu, b)liniowo narastającemu. 3

4 Człon inercyjny + () = L = = + Wymuszenie skokowe = + = Wymuszenie liniowe = + = a) Im{s} b) ( ) 0,63 A Re{s} T t Charakterystyki czasowe odpowiedzi członu proporcjonalnego z inercją o stałej czasowej T przy K > poddanego wymuszeniu: a) skokowemu, b)liniowo narastającemu. T ti t 4

5 Człon całkujący z inercją + = L = = + Wymuszenie skokowe Wymuszenie liniowe = ( + ) = + =. = 2 ( ) Im{s} ( ) Re{s} T t T t Charakterystyki czasowe obiektu złożonego z członów: proporcjonalnego o wzmocnieniu K >, całkującego i inercyjnego o stałej czasowej T, poddanego wymuszeniu: a) skokowemu, b)liniowo narastającemu. 5

6 Człon różniczkujący rzeczywisty + () = L = = + = Wymuszenie skokowe () = + =. + = + = = Wymuszenie liniowe + Im{s} Re{s} = a) T t b) T t Charakterystyki obiektu złożonego z członów: proporcjonalnego o wzmocnieniu K >, różniczkującego z inercyjną o stałej czasowej T poddanego wymuszeniom skokowym: a) stałowartościowemu, b) prędkościowemu (liniowo narastającemu) 6

7 Człon inercyjny drugiego rzędu = Wymuszenie skokowe + + () = + () = + + = Wymuszenie liniowe + + () = + = ln Im{s} Re{s} = punkt przegięcia a) ti t Charakterystyki obiektu inercyjnego drugiego rzędu o stałych czasowych inercji T i T2 (T2 > T) i wzmocnieniu K >, poddanego wymuszeniom skokowym: a) stałowartościowemu, b) prędkościowemu (liniowo narastającemu) b) T+T2 t 7

8 Człon inercyjny drugiego rzędu =, Transformatę operatorową odpowiedzi obiektu na wymuszenie = opisuje zależność Wprowadzając podstawienia typu: () = = pulsacja drgań nietłumionych, = = bezwględny współczynnik tłumienia, przy czym jest wyględnym współcz. tłumienia, = = pulsacja drgan własnych tłumionych. Transformata odpowiedzi przyjmuje postać () = Transformata ma trzy pierwiastki z czego jeden ma wartość = 0, a pozostałe dwa pierwiastki, będące biegunami transmitancji, mogą być różnego typu w zależności od wartości współczynnika tłumienia ζ. Mogą tu wystąpić trzy przypadki, które zostaną niżej pokazane. 8

9 . Dla współczynnika o wartościach z przedziału 0 < pozostałe dwa pierwiastki (bieguny transmitancji członu) są parą liczb zespolonych sprzężonych, = ± = ± Odpowiedź na wymuszenie skokowe o amplitudzie A = sin +, gdzie = arctg = 2, = Im{s} + Re{s} tn + t Charakterystyka skokowa obiektu drugiego rzędu oscylacyjnego o wzmocnieniu K > i współczynniku tłumienia 0 < ζ <. 9

10 2 Dla współczynnika o wartości = transformata odpowiedzi przyjmuje postać () = +. Transmitancja operatorowa członu ma w tym przypadku dwukrotny pierwiastek o wartości, =. Oryginał odpowiedzi obiektu zapisać jako = + 3 Dla współczynnika o wartości > dwa pierwiastki transmitancji będą pojedyncze Transformata odpowiedzi przyjmuje postać () = Oryginał odpowiedzi obiektu zapisać, = ± =

11 ζ < 0,7 Im{s} ζ < 0,7 = 0,7 = = 0,7 Re{s} > > = Charakterystyki skokowe członu drugiego rzędu o wzmocnieniu K > i różnych wartościach współczynnika tłumienia ζ > 0. t Miejsca położeń biegunów członu oscylacyjnego przy wartościach współczynnika tłumienia > 0

12 CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie transmitancji operatorowej, stosując podstawienie u(t) () () = sin () = sin + Rys.. Przebieg odpowiedzi układu na wymuszenie harmoniczne w stanie ustalonym ϕ = () Transmitancja widmowa ma następującą interpretację fizyczną. Jeżeli na wejście liniowego członu lub układu o transmitancji operatorowej () będzie wprowadzony sygnał sinusoidalny = sin (rys. ), to po zakończeniu procesu przejściowego na wyjściu ustali się sinusoidalny sygnał = sin + o tej samej częstotliwości kątowej (pulsacji) jaką ma sygnał wejściowy, lecz zwykle o innej amplitudzie i fazie, które są zależne od bieżącej wartości tej częstotliwości. Warto tutaj odnotować fakt, że przesunięcie fazowe sygnału wyjściowego względem wejściowego o kąt odpowiada przesunięciu tych sygnałów o = jednostek czasu. 2

13 Z twierdzenia o przesunięciu w dziedzinie zmiennej rzeczywistej wynika, że a stąd transmitancję operatorową zapisać można w postaci Lsin + = Lsin, (2) = = = L sin + L sin () Lsin Lsin = () (3) Zgodnie z () = () = () (4) Transmitancja widmowa ma sens wzmocnienia zespolonego, przebiegu harmonicznego o pulsacji 3

14 Moduł transmitancji widmowej () = = () = (5) określa wzmocnienie - stosunek amplitud sygnałów harmonicznych wyjściowego () i wejściowego (), a argument (kąt fazowy) = = (6) transmitancji widmowej przesunięcie fazy sygnału () względem (). Na podstawie twierdzenia Eulera dla liczb zespolonych można transmitancję widmową zapisać w postaci gdzie: = = cos + sin = + (7) = Re() = cos = Im() = sin Zależność określającą kąt fazowy można zapisać jako moduł zaś w postaci = arg = = arctg, (8) = = +. (9) 4

15 Miejsce geometryczne punktów, jakie zakreśla koniec wektora na płaszczyźnie zmiennej zespolonej, przy zmianie pulsacji 0 < < sygnału wejściowego, nazywa się charakterystyką amplitudowo-fazową lub wykresem Nyquista. Charakterystyka ta określa zatem zachowanie się elementu lub układu w zadanym zakresie zmian wartości częstotliwości sygnału wejściowego (). Oprócz wykresów Nyquista bardzo powszechnie stosuje się charakterystyki częstotliwościowe logarytmiczne, tzw. wykresy Bodego. Osie i () skaluje się logarytmicznie, wprowadzając tzw. moduł logarytmiczny () = 20 log (0) którego jednostką jest decybel (db); wzmocnieniu 0-krotnemu odpowiada 20 db, -krotnemu 0 db. Dla charakterystyki fazowej oś skaluje się logarytmicznie, a pozostawia się w mierze liniowej. 5

16 . Charakterystyki amplitudowo-fazowe - wykres Nyquista Transmitancję widmową można zapisać w postaci funkcji wymiernej gdzie () i ( ) są wielomianami zmiennej zespolonej. Oba wielomiany można zapisać w nieco rozwiniętej postaci =, () Jeśli uwzględnić (2) w () = + = + (2) = + + = + + (3) składowe, rzeczywista i urojona, transmitancji widmowej ( ) (7) przyjmą postać = + + = + + (4) 6

17 Powyższe zależności umożliwiają wyznaczenie współrzędnych położenia końca wektora ( ) na płaszczyźnie Nyquista dla różnych wartości częstotliwości kątowej. Z punktu widzenia analizy i syntezy układów regulacji istotnymi punktami są te, które określają wartości współrzędnych dla pulsacji granicznych = 0 i = oraz wartości tych pulsacji, dla których trajektoria zmian położeń wektora () przecina: oś rzeczywistą, tzn. gdy Q = 0, oraz oś urojoną, tzn. gdy = 0. () ( ) ( ) = ( ) ( ) ( ( ) ) ( ) = ( ) M(0) wzrost ω () Rys.2. Charakterystyka amplitudowo-fazowa i jej parametry - wykres Nyquista 7

18 Zadanie Wyznaczyć charakterystykę amplitudowo-fazową, wykres Nyquista, obiektu opisanego poniższą transmitancją operatorową = (a) Rozwiązanie Podstawiając w transmitancji (a) =, otrzymujemy = = Mnożąc licznik i mianownik funkcji (b) przez czynniki wielomianowe sprzężone z czynnikami wielomianowymi mianownika transmitancji widmowej (b), otrzymujemy = = = Współrzędne rzeczywiste wykresu Nyquista obiektu określają części: rzeczywista i urojona transmitancji widmowej 5 = = = Im = (b) (c) (d) 8

19 () ω=0 ω=6 ω= -0.2 ω= () ω=0,5 ω=3, ω=2 ω=, Rys.3. Charakterystyka amplitudowo-fazowa wykres Nyquista obiektu inercyjnego drugiego rzędu Wartości tych współrzędnych dla wybranych, nieujemnych wartości pulsacji ( 0) przedstawiono w tablicy. ω[rad/s] 0 0,5, 2 3, P(ω),00 0,95 0,77 0,44 0,00-0,2-0,09 0 Q(ω) 0,00-0,26-0,49-0,64-0,48-0,26-0,09 0 Wartość pulsacji, przy której ma miejsce przecięcie osi, wyznaczamy rozwiązując równanie = 0, skąd = 5 = 3,87 9

20 Zadanie 2 Wyznaczyć charakterystykę amplitudowo-fazową, wykres Nyquista, obiektu opisanego poniższą transmitancją operatorową = + + (a) gdzie: =, = 0,4 s, = 2,5 s Rozwiązanie Podstawiając w transmitancji (a) =, otrzymujemy = = + + (b) Mnożąc licznik i mianownik funkcji (b) przez czynniki wielomianowe, sprzężone z czynnikami wielomianowymi mianownika transmitancji widmowej (b), otrzymujemy = (c) 20

21 Na podstawie (c) widać, że składowe rzeczywiste i urojone transmitancji widmowej określone są zależnościami = + + +, (d) = + +. (e) Uwzględniając zadane wartości stałych czasowych i wzmocnienia obiektu, wartości powyższych składowych dla wybranych, nieujemnych wartości pulsacji ( 0) ω[rad/s] 0 0,06 0, 0,5 0,3 0,5 P(ω) -2,90-2,83-2,78-2,53 -,83 -,09-0,345 0 Q(ω) -6,2-9,34-5,74 -,93-0, Pulsacja, przy której występuje przecięcie osi przez charakterystykę amplitudowo-fazową wyznaczona, została z przyrównania składowej do zera, a więc skąd = 0 = = 2

22 Na rys.4.a) można spostrzec, że dla zerowych wartości stałych czasowych członów inercyjnych ( + = 0) otrzymujemy wykres charakterystyki Nyquista dla idealnego członu całkującego. Charakterystyka będzie wówczas przebiegała wzdłuż asymptoty 0 leżącej na ujemnej części osi składowej. 0 = + () () ω=0,5 ω= ω=0,3 ω= () ω= ω= 0 () -0.2 ω=0,5 ω=0, ω=0, ω=0, ω=0,06 a) -6 b) Rys.4. Charakterystyka amplitudowo-fazowa wykres Nyquista obiektu trzeciego rzędudwuinercyjnego z członem całkującym a), fragment wykresu powiększony w pobliżu punktu przecięcia osi składowej b) 22

23 2. Charakterystyki logarytmiczne modułu i fazy Charakterystyki częstotliwościowe Bodego składają się z dwóch wykresów. Jeden dotyczy logarytmu z modułu (amplitudy), czyli () = 20 log drugi - kąta fazowego = arg = = arctg, naniesione jako funkcje częstotliwości w skali logarytmicznej. Wykreślanie ( ), jak również ( ), można znacznie uprościć, wykorzystując do tego asymptoty prostoliniowe, tzw. charakterystyki asymptotyczne amplitudy i fazy. Większość transmitancji ma postać iloczynową typu = , (5) gdzie = ±, ( 0). Stąd zarówno logarytm modułu jak i kąt fazowy na wykresach Bodego wyrażają się przez sumowanie 20log = 20 log + 20 log log (5.a) 20 log + 20 log

24 arg = arg + arg + + arg (5.b) arg + arg Wykresy Bodego dla wyrażenia (5) sprowadzają się do superpozycji graficznej krzywych poszczególnych członów. Transmitancja składa się z kombinacji członów typu: a), b) + ±, (6) c) ± i co za tym idzie, charakterystyki asymptotyczne amplitudy i fazy wyrażenia (5) będą superpozycją asymptot prostoliniowych tych członów elementarnych (6). Człony z wykładnikiem potęgowym: dodatnim mają cechy członu różniczkującego - przyspieszającego, ujemnym - mają cechy członu całkowego - opóźniającego. 24

25 Charakterystyki asymptotyczne członu typu ( 6.a) () = 20 log = 20 log + 20 log, = arg = 90 Człon ten wprowadza stałe przesunięcie fazowe, a wykres logarytmu modułu jest linią prostą o nachyleniu 20 db/dek. (dekadę) przy czym = ± = 0,, 2. Dla wykładnika 0 linia ta przecina oś odciętych przy częstotliwości =. Dla wartości wykładnika = 0 wykresy modułu są liniami prostymi równoległymi do osi odciętych - pulsacji. Przesunięcie fazowe ma wartość zerową. (7) [db] 20 N=0, K> [ ] N=2 N=-2 N= dekada log() N=- N=0, K< N=2 N= N=0 N=- N=-2 dekada log() -20 Rys.5. Charakterystyki amplitudowe i fazowe członów: różniczkowych N>0, całkowych N<0, proporcjonalnego N=0 25

26 Charakterystyki asymptotyczne członu typu ( 6.b) () = 20 log + ± = ±20 log +, = arg + ± = ± arctg Gdy częstotliwość jest dostatecznie mała, tzn., to składnik jest pomijalnie mały w stosunku do, tzn. i logarytm modułu ma wartość 20 log = 0. Zatem dla małych częstotliwości asymptota jest linią prostą leżącą na osi odciętych - częstotliwości. Ta część charakterystyki ma cechy członu proporcjonalnego o wzmocnieniu (0dB). Dla dużych zaś częstotliwości, tj. gdy, logarytm modułu członu można być aproksymowany asymptotą ±20 log. Dla tego zakresu częstotliwości ta część charakterystyki ma cechy członu różniczkowego (wykładnik dodatni) lub całkowego (wykładnik ujemny). Jest to bowiem linia prosta o nachyleniu ±20 db/dek, przecinająca oś odciętych przy częstotliwości granicznej =, gdzie = jest tzw. częstotliwością sprzęgającą półproste obu asymptot. Dla tej częstotliwości kątowej logarytm modułu rzeczywistej charakterystyki częstotliwościowej członu wynosi ±20 log + = 3 db. Wartość ta stanowi maksymalny błąd aproksymacji logarytmicznej charakterystyki amplitudowej asymptotami prostoliniowymi. Jedna z metod wykreślania asymptotycznej charakterystyki fazowej polega na zastąpieniu krzywej odcinkiem siecznej, przecinającej asymptoty w punktach odpowiadających częstotliwościom = 0, i = 0. Dla częstotliwości < 0, fazowe wnoszone przez człon jest bliskie 0. Dla dużych zaś częstotliwości, tj. gdy > 0, przesunięcie fazowe jest bliskie ±90. ( 8) 26

27 [db] [db] dekada 20 0 log() 0 log() [ ] arctg -40 [ ] arctg , 0 log() arctg Rys.6. Charakterystyki amplitudowe a) i fazowe b) członu różniczkowo-proporcjonalnego i całkowo-proporcjonalnego , 0 log( ) arctg 2 Rys.7. Charakterystyki amplitudowe i fazowe członu drugiego rzędu różniczkowo-proporcjonalnego i całkowo-proporcjonalnego 27

28 Charakterystyki asymptotyczne członu typu ( 6 c)) = 20 log ± = ±20 log + 2 = arg ± = ± arctg 2 Dla małych częstotliwości logarytm modułu może być aproksymowany asymptotą 20 log = 0. Tak jak poprzednio, dla małych częstotliwości asymptota jest linią prostą, leżącą na osi odciętych - częstotliwości. Ta część charakterystyki ma cechy członu proporcjonalnego o wzmocnieniu (0dB). Dla dużych częstotliwości logarytm modułu może być aproksymowany asymptotą ±20 log = ±40 log. Jest to linia prosta o nachyleniu ±40 db/dek, przecinająca oś odciętych przy częstotliwości sprzęgającej =. Dla tego zakresu częstotliwości ta część charakterystyk ma cechy członów drugiego rzędu różniczkowego (wykładnik dodatni) lub całkowego (wykładnik ujemny). Dokładność aproksymacji asymptotami prostoliniowymi zależy od współczynnika tłumienia. Im mniejszą wartość ma ten współczynnik <, tym większa jest różnica pomiędzy wartością charakterystyki amplitudowej rzeczywistej a jej aproksymacji prostoliniowej, co szczególnie uwidacznia się dla częstotliwości bliskich wartości częstotliwości sprzęgającej =. Dla częstotliwości < 0, przesunięcie fazowe wnoszone przez człon jest bliskie 0. Dla dużych zaś częstotliwości, tj. gdy > 0, wtedy przesunięcie fazowe jest bliskie ±80. Dokładność aproksymacji pomiędzy tymi wartościami kątowymi zależy od współczynnika tłumienia. (Rys. 7). (9) 28

29 Zadanie 3 Wyznaczyć rzeczywiste i asymptotyczne przebiegi logarytmicznych charakterystyk amplitudowej i fazowej obiektu dwuinercyjnego o transmitancji =,8 + 0,3 + 6 (a) Rozwiązanie Z postaci transmitancji wynika, że częstotliwość sprzęgająca członów inercyjnych wynosi odpowiednio Wzmocnienie obiektu ma wartość = 0,3 rad s, = 6 rad s. =,8 0,3 6 = Transmitancję widmową obiektu możemy zapisać w postaci iloczynu transmitancji członów elementarnych typu 6.b) = + + (b) 29

30 Jeśli oznaczyć = +, = + (c) moduł transmitancji będzie iloczynem modułów członów elementarnych =, przy czym = = + = 0,3 +, (d) = = + =

31 Wprowadzając oznaczenia modułów logarytmicznych członów elementarnych = 20 log, = 20 log równanie logarytmicznej charakterystyki amplitudowej możemy zapisać w postaci () = + Poszczególne człony wniosą przesunięcia fazowe (e) (f) = arctg, = arctg (g) Stąd charakterystykę fazową obiektu określa równanie = + = arctg 0,3 arctg (h) 5 Sumowanie charakterystyk, zgodnie z równaniami (f) i (h), pokazuje rysunek 8. 3

32 [db] log ω [ ] 0 0, 0. 0, log ω Rys.8. Charakterystyki amplitudowe i fazowe obiektu składającego się z dwóch członów inercyjnych (całkowo proporcjonalnych) 32

33 Zadanie 2.4 Wyznaczyć charakterystyki logarytmiczne układu o transmitancji = ( + ) + + (a) dla = 00 /s, = 5 s, = 0,5 s, = 0,02 s. Rozwiązanie Po wprowadzeniu oznaczeń częstotliwości sprzęgających = = 0,2 rad s, = = 2 rad s, = = 50 rad s transmitancję a) przekształcamy do postaci widmowej iloczynu członów elementarnych = ( + ) + + (b) 33

34 Sumowanie logarytmicznych charakterystyk amplitudowych i fazowych pokazano na rys. 9, stosując oznaczenia = 20 log = 20 log 20 log = 20 log log, = 20 log +, = 20 log +, = 2 20 log +, = arg = 90, = arg + = arctg, = arg + = arctg, = arg + = 2 arctg. 34

35 [db] log 20 log ω log ω [ ] 90 Rys. 9. Charakterystyki amplitudowe i fazowe , 0, , 0 0 log ω

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Korekcja układów regulacji

Korekcja układów regulacji Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Informatyczne Systemy Sterowania

Informatyczne Systemy Sterowania Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych

Bardziej szczegółowo

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem: PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Sterowanie Serwonapędów Maszyn i Robotów

Sterowanie Serwonapędów Maszyn i Robotów Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco: Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH

III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Bardziej szczegółowo

4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH

4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH 4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH 4.1. PODSTAWOWE ELEMENTY LINIOWE 4.1.1. Uwagi ogólne Układ dynamiczny daje się zwykle podzielić na elementy, z których każdy można rozpatrywać niezależnie

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr

Bardziej szczegółowo

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH Laboratorium Podstaw Metrologii BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jest: przybliżenie zagadnień dotyczących pomiarów wielkości zmiennych w czasie,

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

( 1+ s 1)( 1+ s 2)( 1+ s 3)

( 1+ s 1)( 1+ s 2)( 1+ s 3) Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo