układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:"

Transkrypt

1 Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco: 1. Układ zamknięty jest stabilny asymptotycznie, przy załoŝeniu, Ŝe równanie charakterystyczne układu otwartego ma k pierwiastków w prawej półpłaszczyźnie i n-k pierwiastków w lewej półpłaszczyźnie, wtedy i tylko wtedy, gdy charakterystyka amplitudowo-fazowa układu otwartego przy zmianie pulsacji ω od - do obejmuje w kierunku dodatnim k razy punkt (-1,j). Układ zamknięty jest stabilny asymptotycznie, przy załoŝeniu, Ŝe równanie charakterystyczne układu otwartego nie ma pierwiastków w prawej półpłaszczyźnie zmiennej zespolonej, wtedy i tylko wtedy, gdy charakterystyka amplitudowofazowa układu otwartego przy zmianie pulsacji ω od - do nie obejmuje punktu (-1,j).. Na płaszczyźnie zmiennej zespolonej punkt (-1,j) nazywamy punktem Nyquista. W pewnych przypadkach wygodniej jest posługiwać tzw. regułą lewej strony, która mówi, Ŝe układ zamknięty jest stabilny, jeŝeli przy wzroście ω od do, punkt (-1,j) znajduje się w obszarze po lewej stronie wykresu G o (jw). W praktycznych zastosowaniach kryterium Nyquista jest szczególnie przydatne w przypadku, gdy układ otwarty jest stabilny. MoŜna wtedy korzystać z przebiegu charakterystyki G o ( jω) układu otwartego zdjętej doświadczalnie, co pozwala na badanie stabilności takŝe układu, którego opis matematyczny nie jest znany. Przykład 1 PokaŜemy obszar płaszczyzny zmiennej zespolonej zakreślany przez charakterystykę amplitudowo fazową stabilnego modelu. 1 T ( s), zmiana pulsacji ω od - do s + 1 Punkt Nyquista nie naleŝy do obszaru zakreślonego przez charakterystykę czyli nie jest przez nią obejmowany. W związku z tym po zamknięciu pętlą sprzęŝenia zwrotnego powstały układ nadal będzie stabilny, co wynika z tw. Nyquista. Transmitancja układu zamkniętego : T ( s) 1 Tz ( s) <- układ jest nadal stabilny, s- 1 + T ( s) s +

2 .5 Nyquist Diagram.4.. Imaginary Axis Real Axis Komendy w Matlabie: Tstf([1],[1 1]); nyquist(ts); Przykład RozwaŜmy układ niestabilny. Zbadamy moŝliwość ustabilizowania modelu układu o transmitancji :.1s + 1 T ( s) Pierwiastki równania charakterystycznego tego modelu to : s +.5s.5 s 1-1, s.5 Wynika stąd, Ŝe model jest niestabilny. W celu ustabilizowania układu opisanego transmitancją T(s) zastosujemy sprzęŝenie zwrotne. Przed zamknięciem pętli sprzęŝenia zwrotnego naleŝy sprawdzić, wykorzystując twierdzenie Nyquista, czy ten zabieg moŝe spowodować ustabilizowanie układu. Z wykonanej charakterystyki widać, Ŝe punkt Nyquista jest nią obejmowany jednokrotnie podczas zmiany pulsacji od - do. PoniewaŜ badany układ ma jeden pierwiastek w prawej półpłaszczyźnie zmiennej zespolonej, wiec na mocy tw. Nyquista wiadomo, Ŝe po zamknięciu pętli sprzęŝenia zwrotnego układ ten stanie się stabilny. Po zamknięciu pętli sprzęŝenia zwrotnego uzyskujemy układ o transmitancji :

3 .1s + 1 Tz ( s), którego pierwiastki leŝą w lewej półpłaszczyźnie zmiennej s +.6s +.5 zespolonej s 1 -.+j,64 oraz s -.-j,64 oraz.5 Nyquist Diagram.4.. Imaginary Axis Komendy w Matlabie: Tstf([.1 1],[ ]); nyquist(ts); Tszfeedback(Ts); Proots([1.6.5]); Przykład Obiekt o transmitancji G( s) s + s k + s + 1 Real Axis pracuje w układzie zamkniętym z regulatorem proporcjonalno-całkującym o transmitancji G r 1 k p 1 + Ti s

4 G r 1 k p 1 + Ti s G( s) s + s k + s + 1 Rys. Błąd! Nie zdefiniowano zakładki. Schemat układu zamkniętego z obiektem statycznym trzeciego rzędu i regulatorem PJ Transmitancja układu otwartego G ( s) G ( s) G( s) o r Rozpatrzymy dwa przypadki regulacji: z regulatorem nastawionym na działanie wyłącznie proporcjonalne i drugi z regulatorem proporcjonalno-całkującym. a) Przyjmiemy wzmocnienie obiektu k 1 oraz wyłączamy działanie całkujące regulatora przez nastawienie czasu izodromu T i. Stąd mamy G o ( s) s k + s p + s + 1 Za pomocą polecenia nyquist z pakietu MATLAB-a, wykonamy wykresy charakterystyk amplitudowo-fazowych układu otwartego Go(jw) dla trzech wartości wzmocnienia regulatora k p, i 4. 1 W ykres Nyquista Go(jw) Q(w) kp w kp kp Rys. Błąd! Nie zdefiniowano zakładki. Charakterystyki amplitudowo-fazowe układu otwartego Go(jw) dla k p,, 4 P(w)

5 Wykresy Nyquista układu otwartego Go(jw) obejmują trzy charakterystyczne przypadki regulacji. W pierwszym z nich dla k p charakterystyka Go(jw) przy zwiększaniu częstotliwości ω od do nie obejmuje punktu (-1,j) układ zamknięty jest wtedy stabilny. W drugim przypadku dla k p charakterystyka G(jw) przechodzi przez punkt (- 1,j) układ jest na granicy stabilności. Wreszcie dla k p 4 charakterystyka Go(jw) przy wzroście ω od do obejmuje punkt (-1,j) układ po zamknięciu sprzęŝenia zwrotnego będzie niestabilny. Potwierdzenie tego znajdujemy przez stwierdzenie połoŝenia biegunów transmitancji układu zamkniętego na płaszczyźnie zmiennej zespolonej. Wyznaczamy transmitancję układu zamkniętego Go ( s) Gz ( s) 1+ G ( s) s o + s k p + s + k A stąd równanie charakterystyczne układu M z ( s) s + s + s + k p + 1 p + 1 Wyznaczamy pierwiastki równania charakterystycznego za pomocą polecenia roots z pakietu MATLAB-a, dla k p mamy s s j s j Jak widać wszystkie pierwiastki mają części rzeczywiste ujemne, czyli istotnie układ zamknięty spełnia warunek konieczny i dostateczny stabilności. Obliczamy z kolei pierwiastki dla k p s 1 -. s j s j W tym przypadku występują pierwiastki urojone sprzęŝone, zatem układ zamknięty jest na granicy stabilności. W końcu dla k p 4, mamy pierwiastki s s j s j Tym razem występują pierwiastki zespolone sprzęŝone, których części rzeczywiste są dodatnie, wobec tego układ zamknięty jest dla tego przypadku niestabilny. Innym sposobem jak najbardziej wizualnym, zaprezentowania reakcji układu zamkniętego na zakłócenie w postaci skoku jednostkowego przyłoŝonego do jego wejścia, jest przedstawienie przebiegów charakterystyk skokowych.

6 6 4 Reakcja układu zamkniętego na skok jednostkowy dla kp dla kp4 dla kp W yjscie Czas [sek] Rys. Błąd! Nie zdefiniowano zakładki. Odpowiedzi układu zamkniętego z regulatorem proporcjonalnym na zakłócenie na wejściu w postaci skoku jednostkowego b) Zbadamy teraz stabilność układu zamkniętego z regulatorem proporcjonalnocałkującym dla stałego wzmocnienia regulatora kp 1 i róŝnych wartości czasu izodromu. Wykonujemy charakterystyki amplitudowo-fazowe układu otwartego G o kk p ( Ti s + 1) ( s) T s( s + s + s + 1) i

7 .5 W ykres Nyquista Go(jw) Ti -1.5 Ti 1 Q(w) Ti, w Rys. 4 Charakterystyki amplitudowo-fazowe układu otwartego Go(jw) z regulatorem proporcjonalno-całkującym przy k p 1 dla czasu izodromu T i,8, 1 i Układ otwarty jest w tym przypadku astatyczny ze względu na akcję całkującą regulatora. Charakterystyka Nyquista biegnie po ujemnych wartościach od minus nieskończoności do zera przy zwiększaniu częstotliwości od zera do nieskończoności. P(w) JeŜeli wykres G o (jw) przechodzi przez punkt (-1,j), to układ zamknięty jest na granicy stabilności, a na jego wyjściu występują drgania o ustalonej amplitudzie, jak na wykresie dla T i 1 na rys. 5. Transmitancja układu zamkniętego z regulatorem PI przyjmuje postać: Gz ( s) T s i 4 + T s i kk p i i + T s ( T s + 1) + T s(1 + kk i p ) + kk p

8 Stąd dla przyjętych wartości parametrów układu otrzymujemy przebiegi charakterystyk skokowych jak na rys Charakterystyka skokowa 4 Ti 1 Ti Ti,8 Odpowiedz Czas [sek] Rys. 5 Reakcja układu zamkniętego z regulatorem proporcjonalno-całkującym na zakłócenie na jego wejściu w postaci skoku jednostkowego Zbadamy teraz połoŝenie biegunów transmitancji układu zamkniętego z regulatorem proporcjonalno-całkującym. PosłuŜymy się tym razem poleceniem pzmap MATLAB-a, które tworzy wykres na płaszczyźnie zmiennej zespolonej z zaznaczonymi biegunami i zerami transmitancji układu zamkniętego. Jak widać na rys. 6 dla Ti,8 dwa bieguny transmitancji mają części rzeczywiste dodatnie, więc układ zamknięty jest dla tej wartości czasu izodromu niestabilny. Dla Ti 1 układ ma dwa bieguny połoŝone na osi urojonej, zatem jest na granicy stabilności. I wreszcie dla Ti wszystkie bieguny leŝą w lewej półpłaszczyźnie, czyli układ jest w tym przypadku stabilny.

9 Bieguny dla Ti,8 Zero dla Ti,8 Ti 1 Ti 1 Ti Ti Mapa zer i biegunów Imaginary Axis Real Axis Rys. Błąd! Nie zdefiniowano zakładki. Rozkład biegunów i zer transmitancji układu zamkniętego Zapas stabilności Nyguist Zapas wzmocnienia Gm odwrotność długości odcinka wyznaczonego przez początek układu współrzędnych oraz punkt przecięcia wykresu Nyquista z ujemną półosią Re(G(jω)). Zapas fazy Pm kąt między półprostą wychodzącą z początku układu współrzędnych i przechodzącą przez punkt przecięcia wykresu Nyquista z kołem jednostkowym.

10 Wyznaczenie zapasu wzmocnienia i zapasu fazy na podstawie wykresów Bodego Zapas wzmocnienia Gm (ang. gain margin) wartość wzmocnienia, dla którego faza osiąga Jego wartość oznacza o ile moŝna zwiększyć wzmocnienie zanim stracimy stabilność. Zapas fazy Pm (ang. phase margin) wartość fazy dla częstotliwości, przy której zmocnienie wynosi 1 ( db). Jego wartość oznacza o ile moŝna zmniejszyć przesunięcie fazowe zanim stracimy stabilność. W celu wyznaczenia zapasu fazy naleŝy wyznaczyć tzw. pulsację odcięcia, tj. pulsacje,która spełnia warunek lg M(ωo) a następnie określić fazę Φ(ωo). Zapasem fazy określa się sumę f 18 - Φ(ωo) [deg] Jeśli jest ona dodatnia układ jest stabilny z zapasem fazy f, który mówi o tym, o ile moŝna zwiększyć fazę układu otwartego bez zmiany jego wzmocnienia, aby układ pozozstawał jeszcze stabilnym. Zapas modułu moŝna wyznaczyć określając ω dla której Φ(ω -Π) -18 deg a następnie pomierzyć dla tej samej pulsacji moduł Lm(ω -Π). Jest on równy zapasowi modułu, gdyŝ właśnie o tyle moŝna zwiększyć moduł w układzie, aby przy niezmiennej fazie pozostawał on stabilny. Aby wyznaczyć, o ile moŝna zwiększyć wzmocnienie układu otwartego, naleŝy skorzystać z zaleŝności: LmlgK.

11 Przykład 4 Model o transmitancji : s +.5 K ( s) s(.1s +.7s +.) Wyznaczyć zapas amplitudy i fazy na charakterystyce Bodego. K s) s(.1s s s +.).1s s +.5 ( 4 Komendy w Matlabie: Kstf([1.5],[.1.7. ]) Figure(1),margin(Ks); kroots([.1.7. ]) figure(),nyquist(ks); +.7s +.s

12 5 Bode Diagram Gm Inf, Pm -4. deg (at 1.8 rad/sec) Magnitude (db) Phase (deg) Frequency (rad/sec) Biegunami modelu są liczby s 1, s -7.6, s.1+j.651, s 4.1-j.651 Model ten jest niestabilny, co rozpoznajemy po wartościach biegunów modelu. Dwa z nich (s,s4) znajdują się w prawej półpłaszczyźnie zmiennej zespolonej. Według tw. Nyquista zamknięcie pętli sprzęŝenia zwrotnego ustabilizuje model tylko wtedy, gdy charakterystyka modelu dwukrotnie obejmuje punkt Nyquista przy zmianie pulsacji od - do. PoniewaŜ charakterystyka fazowa znajduje się poniŝej linii odpowiadającej przesunięciu fazowemu π to punkt Nyquista nie jest obejmowany przez nią ani razu. Objęcie danego modelu pętlą sprzęŝenia zwrotnego nie ustabilizuje go. Charakterystykę pokazano poniŝej.

13 6 Nyquist Diagram 4 Imaginary Axis Real Axis Kryterium stabilności Michałowa Układ jest stabilny asymptotycznie, jeŝeli charakterystyka amplitudowo-fazowa mianownika transmitancji przebiega kolejno, w lewo przez tyle ćwiartek płaszczyzny zespolonej s ile wynosi stopień tego mianownika., tzn charakterystyki układów stabilnych przebiegają kolejno, w lewo przez tyle ćwiartek płaszczyzny ile wynosi ich rząd, gdy pulsacja dąŝy do nieskończoności.

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 6. Badanie

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Projektowanie sterowników Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 4 stycznia 212 O czym będziemy mówili? 1 2 3 rlocus Wyznaczanie trajektorii

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

Ćw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR

Ćw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Dr inż Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw S-III3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem

Bardziej szczegółowo

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie

Bardziej szczegółowo

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe

Bardziej szczegółowo

Techniki regulacji automatycznej

Techniki regulacji automatycznej Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych

Bardziej szczegółowo

A-4. Filtry aktywne RC

A-4. Filtry aktywne RC A-4. A-4. wersja 4 4. Wstęp Filtry aktywne II rzędu RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który załoŝono sprzęŝenie zwrotne zbudowane z elementów

Bardziej szczegółowo

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem: PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

Korekcja układów regulacji

Korekcja układów regulacji Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

7.2.2 Zadania rozwiązane

7.2.2 Zadania rozwiązane 7.2.2 Zadania rozwiązane PRZYKŁAD 1 (DOBÓR REGULATORA) Do poniŝszego układu (rys.1) dobrać odpowiedni regulator tak, aby realizował poniŝsze załoŝenia: -likwidacja błędu statycznego, -zmniejszenie przeregulowania

Bardziej szczegółowo

Regulator P (proporcjonalny)

Regulator P (proporcjonalny) Regulator P (proporcjonalny) Regulator P (Proportional Controller) składa się z jednego członu typu P (proporcjonalnego), którego transmitancję określa wzmocnienie: W regulatorze tym sygnał wyjściowy jest

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa WZMACNIACZ OPEACYJNY kłady aktywne ze wzmacniaczami operacyjnymi... Podstawowe właściwości wzmacniaczy operacyjnych odzaj wzmacniacza ezystancja wejściowa ezystancja wyjściowa Bipolarny FET MOS-FET Idealny

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Model dopasowywania się cen na rynku

Model dopasowywania się cen na rynku Model dopasowywania się cen na rynku autor: Milena Ścisłowska Uniwersytet Kardynała Stefana Wyszyńskiego, wydział Matematyczno Przyrodniczy Warszawa 2013 Prosty model rynku - kupujący i sprzedający na

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 2. REPREZENTACJA

Bardziej szczegółowo

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera.

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera. 1. Celem projektu jest zaprojektowanie układu regulacji wykorzystującego regulator PI lub regulator PID, dla określonego obiektu składającego się z iloczynu dwóch transmitancji G 1 (s) i G 2 (s). Następnym

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCILAB

WPROWADZENIE DO ŚRODOWISKA SCILAB Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Transmitancja modelu, procesu i regulatora wykorzystana w badaniach. Rzeczywisty regulator PID. Transmitancja regulatora: = sti. Transmitancja modelu:

Transmitancja modelu, procesu i regulatora wykorzystana w badaniach. Rzeczywisty regulator PID. Transmitancja regulatora: = sti. Transmitancja modelu: 1. Cel projektu. Zasymulować odpowiedź skokową procesu P(s). Na podstawie tej odpowiedzi skokowej, określić τ oraz T i wyznaczyć parametry modelu M(s), którego rodzaj jest podany. Model ten będzie wykorzystany

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane

Bardziej szczegółowo

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne 3. WRAŻLIWOŚĆ I BŁĄD USTALONY Podstawowe wzory Wrażliwość Wrażliwość transmitancji względem parametru (3.1a) parametry nominalne (3.1b) Wrażliwość układu zamkniętego (3.2a) (3.2b) Uwaga. Dla Zmiana odpowiedzi

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Generatory drgań sinusoidalnych LC

Generatory drgań sinusoidalnych LC Generatory drgań sinusoidalnych LC Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Generatory drgań sinusoidalnych

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

SYNTEZA obwodów. Zbigniew Leonowicz

SYNTEZA obwodów. Zbigniew Leonowicz SYNTEZA obwodów Zbigniew Leonowicz Literatura: [1]. S. Bolkowski Elektrotechnika teoretyczna. Tom I. WNT Warszawa 1982 (s.420-439) [2]. A. Cichocki, K.Mikołajuk, S. Osowski, Z. Trzaska: Zbiór zadań z elektrotechniki

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Ćw. 6 Generatory. ( ) n. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 6 Generatory. ( ) n. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 6 Generatory. Cel ćwiczenia Tematem ćwiczenia są podstawowe zagadnienia dotyczące generacji napięcia sinusoidalnego. Ćwiczenie składa się z dwóch części. Pierwsza z nich, mająca charakter wprowadzenia,

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo