CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
|
|
- Andrzej Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie transmitancji operatorowej, stosując podstawienie u(t) () () = sin () = sin + Rys.1. Przebieg odpowiedzi układu na wymuszenie harmoniczne w stanie ustalonym ϕ = () Transmitancja widmowa ma następującą interpretację fizyczną. Jeżeli na wejście liniowego członu lub układu o transmitancji operatorowej () będzie wprowadzony sygnał sinusoidalny = sin (rys. 1), to po zakończeniu procesu przejściowego na wyjściu ustali się sinusoidalny sygnał = sin + o tej samej częstotliwości kątowej (pulsacji) jaką ma sygnał wejściowy, lecz zwykle o innej amplitudzie i fazie, które są zależne od bieżącej wartości tej częstotliwości. Warto tutaj odnotować fakt, że przesunięcie fazowe sygnału wyjściowego względem wejściowego o kąt odpowiada przesunięciu tych sygnałów o = jednostek czasu. 1
2 Z twierdzenia o przesunięciu w dziedzinie zmiennej rzeczywistej wynika, że a stąd transmitancję operatorową zapisać można w postaci Zgodnie z (1) Lsin + = Lsin, (2) = L sin + = L sin = () Lsin Lsin = () (3) = () = () (4) Transmitancja widmowa ma sens wzmocnienia zespolonego, przebiegu harmonicznego o pulsacji 2
3 Moduł transmitancji widmowej () = = () = (5) określa wzmocnienie - stosunek amplitud sygnałów harmonicznych wyjściowego () i wejściowego (), a argument (kąt fazowy) = = (6) transmitancji widmowej przesunięcie fazy sygnału () względem (). Na podstawie twierdzenia Eulera dla liczb zespolonych można transmitancję widmową zapisać w postaci gdzie: = = cos + sin = + (7) = Re() = cos = Im() = sin Zależność określającą kąt fazowy można zapisać jako moduł zaś w postaci = arg = = arctg, (8) 3
4 = = +. (9) Miejsce geometryczne punktów, jakie zakreśla koniec wektora na płaszczyźnie zmiennej zespolonej, przy zmianie pulsacji 0 < < sygnału wejściowego, nazywa się charakterystyką amplitudowo-fazową lub wykresem Nyquista. Charakterystyka ta określa zatem zachowanie się elementu lub układu w zadanym zakresie zmian wartości częstotliwości sygnału wejściowego (). Oprócz wykresów Nyquista bardzo powszechnie stosuje się charakterystyki częstotliwościowe logarytmiczne, tzw. wykresy Bodego. Osie i () skaluje się logarytmicznie, wprowadzając tzw. moduł logarytmiczny () = którego jednostką jest decybel (db); wzmocnieniu 10-krotnemu odpowiada 20 db, 1-krotnemu 0 db. Dla charakterystyki fazowej oś skaluje się logarytmicznie, a pozostawia się w mierze liniowej. (10 ) 4
5 1. Charakterystyki amplitudowo-fazowe - wykres Nyquista Transmitancję widmową można zapisać w postaci funkcji wymiernej gdzie () i () są wielomianami zmiennej zespolonej. Oba wielomiany można zapisać w nieco rozwiniętej postaci =, (11) = + = + (12) Jeśli uwzględnić (12) w (11) = + + = + + (13) składowe, rzeczywista i urojona, transmitancji widmowej () (7) przyjmą postać = + + = + + (14) 5
6 Powyższe zależności umożliwiają wyznaczenie współrzędnych położenia końca wektora () na płaszczyźnie Nyquista dla różnych wartości częstotliwości kątowej. Z punktu widzenia analizy i syntezy układów regulacji istotnymi punktami są te, które określają wartości współrzędnych dla pulsacji granicznych = 0 i = oraz wartości tych pulsacji, dla których trajektoria zmian położeń wektora () przecina: oś rzeczywistą, tzn. gdy Q = 0, oraz oś urojoną, tzn. gdy = 0. () ( ) ( ) = ( ) ( ) ( ( ) ) ( ) = ( ) M(0) wzrost ω () Rys.2. Charakterystyka amplitudowo-fazowa i jej parametry - wykres Nyquista 6
7 Zadanie 1 Wyznaczyć charakterystykę amplitudowo-fazową, wykres Nyquista, obiektu opisanego poniższą transmitancją operatorową = (a) Rozwiązanie Podstawiając w transmitancji (a) =, otrzymujemy = = (b) Mnożąc licznik i mianownik funkcji (b) przez czynniki wielomianowe sprzężone z czynnikami wielomianowymi mianownika transmitancji widmowej (b), otrzymujemy = = = (c) Współrzędne rzeczywiste wykresu Nyquista obiektu określają części: rzeczywista i urojona transmitancji widmowej = = (d) 7
8 = Im = () ω=10 ω=6 ω= -0.2 ω= () ω=0,5 ω=3, ω=2 ω=1,1 Rys.3. Charakterystyka amplitudowo-fazowa wykres Nyquista obiektu inercyjnego drugiego rzędu Wartości tych współrzędnych dla wybranych, nieujemnych wartości pulsacji ( 0) przedstawiono w tablicy. ω[rad/s] 0 0,5 1,1 2 3, P(ω) 1,00 0,95 0,77 0,44 0,00-0,12-0,09 0 Q(ω) 0,00-0,26-0,49-0,64-0,48-0,26-0,09 0 Wartość pulsacji, przy której ma miejsce przecięcie osi, wyznaczamy rozwiązując równanie = 0, skąd = 15 = 3,87 8
9 Zadanie 2 Wyznaczyć charakterystykę amplitudowo-fazową, wykres Nyquista, obiektu opisanego poniższą transmitancją operatorową = (a) gdzie: = 1, = 0,4 s, = 2,5 s Rozwiązanie Podstawiając w transmitancji (a) =, otrzymujemy = = (b) Mnożąc licznik i mianownik funkcji (b) przez czynniki wielomianowe, sprzężone z czynnikami wielomianowymi mianownika transmitancji widmowej (b), otrzymujemy = (c) 9
10 Na podstawie (c) widać, że składowe rzeczywiste i urojone transmitancji widmowej określone są zależnościami = = , (d) (e) Uwzględniając zadane wartości stałych czasowych i wzmocnienia obiektu, wartości powyższych składowych dla wybranych, nieujemnych wartości pulsacji ( 0) ω[rad/s] 0 0,06 0,1 0,15 0,3 0,5 1 P(ω) -2,90-2,83-2,78-2,53-1,83-1,09-0,345 0 Q(ω) -16,2-9,34-5,74-1,93-0, Pulsacja, przy której występuje przecięcie osi przez charakterystykę amplitudowo-fazową wyznaczona, została określona z przyrównania składowej do zera, a więc skąd 1 = 0 = 1 = 1 10
11 Na rys.4.a) można spostrzec, że dla wartości stałych czasowych członów inercyjnych bliskich zeru ( + = 0) otrzymujemy wykres charakterystyki Nyquista bliski charakterystyce idealnego członu całkującego. Charakterystyka będzie wówczas przebiegała wzdłuż asymptoty 0 leżącej na ujemnej części osi składowej. 0 = + () () ω=0,5 ω=1 ω=0,3 ω= () ω=1 ω= 0 () -0.2 ω=0,15 ω=0,1 ω=0, ω=0, ω=0,06 a) -16 b) Rys.4. Charakterystyka amplitudowo-fazowa wykres Nyquista obiektu trzeciego rzędudwuinercyjnego z członem całkującym a), fragment wykresu powiększony w pobliżu punktu przecięcia osi składowej b) 11
12 2. Charakterystyki logarytmiczne modułu i fazy Charakterystyki częstotliwościowe Bodego składają się z dwóch wykresów. Jeden dotyczy logarytmu z modułu (amplitudy), czyli () = drugi - kąta fazowego = = =, naniesione jako funkcje częstotliwości w skali logarytmicznej. Wykreślanie (), jak również (), można znacznie uprościć, wykorzystując do tego asymptoty prostoliniowe, tzw. charakterystyki asymptotyczne amplitudy i fazy. Większość transmitancji ma postać iloczynową typu = , (15) gdzie = ±, ( 0). Stąd zarówno logarytm modułu jak i kąt fazowy na wykresach Bodego wyrażają się przez sumowanie 20log = 20 log + 20 log log log log (15.a) 12
13 arg = arg + arg arg (15.b) arg + 1 arg Wykresy Bodego dla wyrażenia (15) sprowadzają się do superpozycji graficznej krzywych poszczególnych członów. Transmitancja składa się z kombinacji członów typu: a), b) + ±, c) + + ± (16) i co za tym idzie, charakterystyki asymptotyczne amplitudy i fazy wyrażenia (15) będą superpozycją asymptot prostoliniowych tych członów elementarnych (16). Człony z wykładnikiem potęgowym: - dodatnim mają cechy członu różniczkującego - przyspieszającego, - ujemnym - mają cechy członu całkowego - opóźniającego. 13
14 Charakterystyki asymptotyczne członu typu ( 16.a) () = 20 log = 20 log + 20 log, = arg = 90 (17) Człon ten wprowadza stałe przesunięcie fazowe, a wykres logarytmu modułu jest linią prostą o nachyleniu 20 db/dek. (dekadę) przy czym = ± = 0, 1, 2. Dla wykładnika 0 linia ta przecina oś odciętych przy częstotliwości =. Dla wartości wykładnika = 0 wykresy modułu są liniami prostymi równoległymi do osi odciętych - pulsacji. Przesunięcie fazowe ma wartość zerową. [db] 20 N=0, K>1 [ ] N=2 N=-2 N=1 dekada N=0, K=1 log() N=-1 N=0, K< N=2 N=1 N=0 N=-1 N=-2 dekada log() Rys.5. Charakterystyki amplitudowe i fazowe członów: różniczkowych N>0, całkowych N<0, proporcjonalnych N=0 14
15 Charakterystyki asymptotyczne członu typu ( 16.b) () = 20 log + 1 ± = ±20 log + 1, = arg + 1 ± = ± arctg (18) Gdy częstotliwość jest dostatecznie mała, tzn. 1, to składnik jest pomijalnie mały w stosunku do 1, tzn. 1 i logarytm modułu ma wartość 20 log 1 = 0. Zatem dla małych częstotliwości asymptota jest linią prostą leżącą na osi odciętych - częstotliwości. Ta część charakterystyki ma cechy członu proporcjonalnego o wzmocnieniu 1 (0dB). Dla dużych zaś częstotliwości, tj. gdy 1, logarytm modułu członu może być aproksymowany asymptotą ±20 log. Dla tego zakresu częstotliwości ta część charakterystyki ma cechy członu różniczkowego (wykładnik dodatni) lub całkowego (wykładnik ujemny). Jest to bowiem linia prosta o nachyleniu ±20 db/dek, przecinająca oś odciętych przy częstotliwości granicznej =, gdzie = 1 jest tzw. częstotliwością sprzęgającą półproste obu asymptot. Dla tej częstotliwości kątowej logarytm modułu rzeczywistej charakterystyki częstotliwościowej członu wynosi ±20 log = 3 db. Wartość ta stanowi maksymalny błąd aproksymacji logarytmicznej charakterystyki amplitudowej asymptotami prostoliniowymi. Jedna z metod wykreślania asymptotycznej charakterystyki fazowej polega na zastąpieniu krzywej odcinkiem siecznej, przecinającej asymptoty w punktach odpowiadających częstotliwościom = 0,1 i = 10. Dla częstotliwości < 0,1 fazowe wnoszone przez człon jest bliskie 0. Dla dużych zaś częstotliwości, tj. gdy > 10, przesunięcie fazowe jest bliskie ±90. 15
16 [db] [db] dekada 20 0 log() 0 log() [ ] arctg -40 [ ] arctg , log() arctg Rys.6. Charakterystyki amplitudowe a) i fazowe b) członu różniczkowo-proporcjonalnego i całkowo-proporcjonalnego , log() arctg 2 1 Rys.7. Charakterystyki amplitudowe i fazowe członu drugiego rzędu różniczkowo-proporcjonalnego i całkowo-proporcjonalnego 16
17 Charakterystyki asymptotyczne członu typu ( 16 c)) = 20 log ± = ±20 log = arg ± = ± arctg 2 1 (19) Dla małych częstotliwości 1 logarytm modułu może być aproksymowany asymptotą 20 log 1 = 0. Tak jak poprzednio, dla małych częstotliwości asymptota jest linią prostą, leżącą na osi odciętych - częstotliwości. Ta część charakterystyki ma cechy członu proporcjonalnego o wzmocnieniu 1 (0dB). Dla dużych częstotliwości 1 logarytm modułu może być aproksymowany asymptotą ±20 log = ±40 log. Jest to linia prosta o nachyleniu ±40 db/dek, przecinająca oś odciętych przy częstotliwości sprzęgającej = 1. Dla tego zakresu częstotliwości ta część charakterystyk ma cechy członów drugiego rzędu różniczkowego (wykładnik dodatni) lub całkowego (wykładnik ujemny). Dokładność aproksymacji asymptotami prostoliniowymi zależy od współczynnika tłumienia. Im mniejszą wartość ma ten współczynnik < 1, tym większa jest różnica pomiędzy wartością charakterystyki amplitudowej rzeczywistej a jej aproksymacji prostoliniowej, co szczególnie uwidacznia się dla częstotliwości bliskich wartości częstotliwości sprzęgającej = 1. Dla częstotliwości < 0,1 przesunięcie fazowe wnoszone przez człon jest bliskie 0. Dla dużych zaś częstotliwości, tj. gdy > 10, wtedy przesunięcie fazowe jest bliskie ±180. Dokładność aproksymacji pomiędzy tymi wartościami kątowymi zależy od współczynnika tłumienia. (Rys. 7). 17
18 Zadanie 3 Wyznaczyć rzeczywiste i asymptotyczne przebiegi logarytmicznych charakterystyk amplitudowej i fazowej obiektu dwuinercyjnego o transmitancji = 1,8 + 0,3 + 6 (a) Rozwiązanie Z postaci transmitancji wynika, że częstotliwość sprzęgająca członów inercyjnych wynosi odpowiednio Wzmocnienie obiektu ma wartość = 0,3 rad s, = 6 rad s. = 1,8 0,3 6 = 1 Transmitancję widmową obiektu możemy zapisać w postaci iloczynu transmitancji członów elementarnych typu 16.b) = (b) 18
19 Jeśli oznaczyć = 1 + 1, = (c) moduł transmitancji będzie iloczynem modułów członów elementarnych =, przy czym = = = 1 0,3 + 1, (d) = = =
20 Wprowadzając oznaczenia modułów logarytmicznych członów elementarnych = 20 log, = 20 log równanie logarytmicznej charakterystyki amplitudowej możemy zapisać w postaci () = + Poszczególne człony wniosą przesunięcia fazowe (e) (f) = arctg, = arctg (g) Stąd charakterystykę fazową obiektu określa równanie = + = arctg 0,3 arctg 5 (h) Sumowanie charakterystyk, zgodnie z równaniami (f) i (h), pokazuje rysunek 8. 20
21 [db] log ω [ ] 0 0, , log ω Rys.8. Charakterystyki amplitudowe i fazowe obiektu składającego się z dwóch członów inercyjnych (całkowo proporcjonalnych) 21
22 Zadanie 4 Wyznaczyć charakterystyki logarytmiczne układu o transmitancji = ( + 1) (a) dla = 100 1/s, = 5 s, = 0,5 s, = 0,02 s. Rozwiązanie Po wprowadzeniu oznaczeń częstotliwości sprzęgających = 1 = 0,2 rad s, = 1 = 2 rad s, = 1 = 50 rad s transmitancję a) przekształcamy do postaci widmowej iloczynu członów elementarnych = ( 1 + 1) (b) 22
23 Sumowanie logarytmicznych charakterystyk amplitudowych i fazowych pokazano na rys. 9, stosując oznaczenia = 20 log = 20 log 20 log = 20 log log, = 20 log + 1, = 20 log + 1, = 2 20 log + 1, = arg = 90, = arg + 1 = arctg, = arg + 1 = arctg, = arg + 1 = 2 arctg. 23
24 [db] log 20 log ω log ω [ ] 90 Rys. 9. Charakterystyki amplitudowe i fazowe ,1 0, , log ω
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Korekcja układów regulacji
Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:
PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC
Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Sterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Informatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Lista 3 Funkcje. Środkowa częśd podanej funkcji, to funkcja stała. Jej wykresem będzie poziomy odcinek na wysokości 4.
Lista 3 Funkcje. Zad 1. Narysuj wykres funkcji. Przykład 1:. Zacznijmy od sporządzenia tabelki dla każdej części podanej funkcji, uwzględniając podany zakres argumentów (dziedzinę): Weźmy na początek funkcję,
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Wzmacniacz jako generator. Warunki generacji
Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego
analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Funkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH
4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH 4.1. PODSTAWOWE ELEMENTY LINIOWE 4.1.1. Uwagi ogólne Układ dynamiczny daje się zwykle podzielić na elementy, z których każdy można rozpatrywać niezależnie
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza