Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki"

Transkrypt

1 Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015

2 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane są dodatkowe wymagania związane z zachowaniem się układu w stanach przejściowych (dynamicznych) i w stanach ustalonych, określane ogólnie jako wymagania dotyczące jakości układu regulacji. Wymagania odnoszące się do przebiegu procesów przejściowych w układach regulacji określane są za pomocą szeregu wskaźników, nazywanych ogólnie kryteriami (wskaźnikami) jakości dynamicznej układu regulacji. Wymagania dotyczące stanów ustalonych formułuje się przez określenie tzw. dokładności statycznej układu regulacji dopuszczalnych wartości odchyłek regulacji w stanach ustalonych.

3 Jakość układu regulacji Zadaniem układu regulacji jest minimalizacja odchyłki regulacji. e(t) = e z (t) + e w (t), (1) gdzie e z (t) - odchyłka wywołana zakłóceniem, e w (t) - odchyłka wywołana wymuszeniem. (zmianą wartości zadanej) e(t) = y m (t) w(t), (2)

4 Regulatory

5 Jakość układu regulacji Przy ocenie jakości układu regulacji analizuje się oddzielnie obydwa składniki odchyłki regulacji.

6 Odchyłka zakłóceniowa Odchyłki statyczne spowodowane zakłóceniem Transmitancja odchyłkowa układu względem zakłócenia G z (s) = y m(s) z(s) = e z(s) z(s) = ±G z(s)g ob (s) 1 + G ob (s)g r (s) e z (s) = y m (s) = ±G z(s)g ob (s) z(s) (4) 1 + G ob (s)g r (s) Odchyłka statyczna względem zakłócenia: (3) e zst. = lim t e z(t) = lim s 0 s e z (s) (5) ±G z (s)g ob (s) e zst. = lim s z(s) (6) s G ob (s)g r (s)

7 Odchyłka nadążania

8 Odchyłka nadążania

9 Odchyłka nadążania Odchyłki statyczne spowodowane zmianą wartości zadanej Transmitancja odchyłkowa układu względem wartości zadanej G ew (s) = e w (s) w(s) = G ob (s)g r (s) 1 e w (s) = w(s) (8) 1 + G ob (s)g r (s) Odchyłka statyczna względem wartości zadanej (7) e wst. = lim t e w (t) = lim s 0 s e w (s) (9) 1 e wst. = lim s w(s) (10) s G ob (s)g r (s)

10 Odchyłki - przykład Wyznaczyć odchyłki statyczne w układzie regulacji pokazanym na rysunku, wywołane zakłóceniem z(t) = 2 oraz zmianą wartości zadanej w(t) = 5, w przypadku zastosowania: regulatora P regulatora PD regulatora PI

11 Odchyłki - przykład Transmitancja Regulator P Regulator PD Regulator PI Zakłócenie Zmiana wartości zadanej G ob (s) = k ob (Ts + 1) 4 (11) G r (s) = k p (12) G r (s) = k p (1 + T d s) (13) ( G r (s) = k p 1 + T d s + 1 ) T i s z(t) = 2 z(s) = 2 s (14) (15) w(t) = 5 w(s) = 5 s (16)

12 Odchyłki - Przykład Odchyłki zakłóceniowe: Regulator P e zst. = lim t e z(t) = lim s 0 s G ob (s) 2 e zst.p = lim s 0 s 1 + G ob (s)g r (s) s = lim s 0 k ob (Ts + 1) 4 2 k ob 1 + (Ts + 1) 4 k p G ob (s) z(s) (17) 1 + G ob (s)g r (s) = lim s 0 k ob 2 (Ts + 1) 4 + k ob k p (18) Odchyłka zakłóceniowa dla regulatora P e zst.p = k ob k ob k p (19)

13 Odchyłki - Przykład Odchyłki zakłóceniowe: Regulator PD e zst. = lim t e z(t) = lim s 0 s G ob (s) z(s) (20) 1 + G ob (s)g r (s) k ob (Ts + 1) e zst.pd = lim 4 2 s 0 = k ob 1 + (Ts + 1) 4 k p(1 + T d s) = lim s 0 k ob 2 (Ts + 1) 4 + k ob k p (1 + T d s) (21) Odchyłka zakłóceniowa dla regulatora PD e zst.pd = k ob k ob k p (22)

14 Odchyłki - Przykład Odchyłki zakłóceniowe: Regulator PI e zst. = lim t e z(t) = lim s 0 s G ob (s) z(s) (23) 1 + G ob (s)g r (s) k ob (Ts + 1) e zst.pi = lim 4 2 s 0 k ob 1 + (Ts + 1) 4 k p(1 + 1 = T i s ) k ob 2 = lim s 0 (Ts + 1) 4 + k ob k p (1 + 1 = 0 T i s ) (24) Odchyłka zakłóceniowa dla regulatora PI e zst.pi = 0 (25)

15 Odchyłki - Przykład Podsumowanie Odchyłka zakłóceniowa dla regulatora P Odchyłka zakłóceniowa dla regulatora PD Odchyłka zakłóceniowa dla regulatora PI e zst.p = k ob k ob k p (26) e zst.pd = k ob k ob k p (27) e zst.pi = 0 (28)

16 Odchyłki - Przykład Odchyłki wymuszeniowe: Regulator P e wst.p = lim e wst. = lim t e z(t) = lim s 0 s s 0 s 1 w(s) (29) 1 + G ob (s)g r (s) G ob (s)k p s = lim 5 s 0 k ob 1 + (Ts + 1) 4 k p 5 = 1 + k ob k p (30) Odchyłka wymuszeniowa dla regulatora P e wst.p = k ob k p (31)

17 Odchyłki - Przykład Odchyłki wymuszeniowe: Regulator PD e wst. = lim t e z(t) = lim s 0 s 1 w(s) (32) 1 + G ob (s)g r (s) 1 5 e wst.pd = lim s 0 s 1 + G ob (s)k p (1 + T d s) s 5 5 = lim s 0 = (33) k ob 1 + (Ts + 1) 4 k 1 + k p(1 + T d s) ob k p Odchyłka wymuszeniowa dla regulatora PD e wst.pd = k ob k p (34)

18 Odchyłki - Przykład Odchyłki wymuszeniowe: Regulator PI e wst. = lim t e z(t) = lim s 0 s 1 w(s) (35) 1 + G ob (s)g r (s) 1 e wst.pi = lim s 0 s ( 1 + G ob (s)k p ) 5 s T i s 5 = lim s 0 ( k ob 1 + (Ts + 1) 4 k p ) = 0 T i s (36) Odchyłka wymuszeniowa dla regulatora PI e wst.pi = 0 (37)

19 Odchyłki - Przykład Podsumowanie Odchyłka wymuszeniowa dla regulatora P e wst.p = Odchyłka wymuszeniowa dla regulatora PD e wst.pd = Odchyłka wymuszeniowa dla regulatora PI k ob k p (38) k ob k p (39) e wst.pi = 0 (40)

20 Odchyłki - Przykład Wnioski: W układzie z obiektem statycznym i regulatorem o algorytmie P lub PD występują niezerowe odchyłki statyczne zarówno zakłóceniowe jak i nadążania proporcjonalne odpowiednio do wartości zakłócenia lub zmiany wartości zadanej. Zwiększenie wzmocnienia proporcjonalnego regulatora P lub PD zmniejsza wartość odchyłek statycznych. Zmniejszenie odchyłki statycznej przez zwiększenie wzmocnienia jest zwykle ograniczone ze względu na warunki stabilności układu. (Układ z regulatorem PD osiąga granicę stabilności przy większym wzmocnieniu regulatora niż w przypadku układu z regulatorem P.) Akcja całkująca występująca w regulatorze zapewnia zerowe odchyłki statyczne przy stałych wartościach zakłócenia lub stałych zmianach wartości zadanej

21 Jakość dynamiczna W praktyce wykorzystuje się różne wskaźniki jakości dynamicznej: wskaźniki dotyczące parametrów odpowiedzi skokowych (wskaźniki przebiegu przejściowego), wskaźniki dotyczące charakterystyk częstotliwościowych układu regulacji - zapasy modułu i fazy, całkowe wskaźniki jakości.

22 Wskaźniki przebiegu przejściowego Do oceny przebiegów przebiegów przejściowych wykorzystywane są wskaźniki: statyczna odchyłka zakłóceniowa: e zst. statyczna odchyłka nadążania: e wst. maksymalna odchyłka dynamiczna: e m - maksymalna wartość odchyłki regulacji po wprowadzeniu zakłócenia skokowego lub skokowej zmiany wartości zadanej. czas regulacji: t r - czas od chwili wprowadzenia skokowego zakłócenia lub wymuszenia do chwili, od której odchyłka regulacji nie wykracza poza przedział wartości ± e. przeregulowanie: κ = e 2 e 1 100% - wyrażony w procentach stosunek amplitudy drugiego odchylenia e 2 od wartości ustalonej do amplitudy pierwszego odchylenia e 1.

23 Odpowiedzi oscylacyjne na zakłócenie skokowe Rysunek : Oscylacyjne odpowiedzi układu regulacji na zakłócenie skokowe: a) z niezerową odchyłką statyczną, b) z zerową odchyłką statyczną

24 Odpowiedzi aperiodyczne na zakłócenie skokowe Rysunek : Aperiodyczne odpowiedzi układu regulacji na zakłócenie skokowe: a) z niezerową odchyłką statyczną, b) z zerową odchyłką statyczną

25 Odpowiedzi oscylacyjne na wymuszenie skokowe Rysunek : Oscylacyjne odpowiedzi układu regulacji na skokową zmianę wartości zadanej: a) z niezerową odchyłką statyczną, b) z zerową odchyłką statyczną

26 Odpowiedzi aperiodyczne na wymuszenie skokowe Rysunek : Aperiodyczne odpowiedzi układu regulacji na skokową zmianę wartości zadanej: a) z niezerową odchyłką statyczną, b) z zerową odchyłką statyczną

27 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek : Układ regulacji Podstawowe formy opisu właściwości obiektów regulacji G ob (s) = y m(s) u(s) = k ob T z s + 1 e T0s, G ob (s) = y m(s) u(s) = 1 T z s e T0s

28 Dobór regulatorów dla T 0 T z < 0, 1 0, 2 regulatory dwu- lub trój-stawne dla 0, 1 T 0 T z < 0, 7 1 0, 2 regulatory o działaniu ciągłym dla T 0 T z > 1 regulatory o działaniu impulsowym (generujące impulsowe sygnały wyjściowe) W przypadku obiektów przemysłowych najczęściej spotykane wartości stosunku T 0 T z mieszczą się w przedziale 0, 2 0, 7. Dlatego w przemysłowych układach regulacji najbardziej rozpowszechnione są regulatory o działaniu ciągłym, realizujące typowe algorytmy regulacji P, PI, PD i PID.

29 Dobór regulatorów Analiza współpracy regulatora z obiektem prowadzi do następujących wniosków odnośnie wyboru algorytmu regulatora: Regulator o algorytmie PI zapewnia dobrą jakość regulacji tylko przy zakłóceniach o niskich częstotliwościach. Akcja całkująca jest niezbędna dla uzyskania odchyłek statycznych równych zero. Regulator o algorytmie PD zapewnia szersze pasmo regulacji niż regulator o algorytmie PI, ale z gorszą jakością regulacji przy niskich częstotliwościach zakłóceń lub wymuszeń. Akcja różniczkująca jest zalecana w przypadku obiektów inercyjnych wyższych rzędów (np. takich jak procesy cieplne), gdyż pozwala na wytworzenie silnego oddziaływania sterującego już przy małych odchyłkach regulacji. Regulator PD nie zapewnia osiągania w stanach ustalonych zerowej odchyłki regulacji. Regulator o algorytmie PID łączy do pewnego stopnia zalety regulatorów PI i PD.

30 Dobór regulatorów Stosowane w praktyce, przemysłowe regulatory o działaniu ciągłym są urządzeniami uniwersalnymi. Ich parametry (nastawy) można zmieniać (nastawiać) w szerokich granicach, dzięki czemu mogą one współpracować poprawnie z obiektami o zróżnicowanej dynamice. Zależnie od stawianych wymagań dotyczących stabilności i jakości regulacji, należy wprowadzić odpowiednie nastawy regulatora dobierane wg procedur nazywanych doborem nastaw. Nastawy, są to następujące wielkości: wzmocnienie proporcjonalne k p = 0, czas zdwojenia T i = 0, s czas wyprzedzenia T d = s

31 Dobór regulatorów Metody doboru nastaw regulatorów PID o działaniu ciągłym metody doświadczalne, nie zapewniające uzyskania określonych parametrów jakościowych układom regulacji, np. Zieglera Nicholsa, Pessena, Hassena i Offereissena, Cohena-Coona, Äströma Hagglunda tabelaryczne metody określania nastaw regulatorów na podstawie parametrów matematycznego modelu obiektu regulacji i wymaganego kryterium jakości układu regulacji samostrojenie np. metoda przekaźnikowa

32 Dobór regulatorów Metoda Zieglera-Nicholsa Wariant 1: nastawy regulatora dobierane są na podstawie parametrów zamkniętego układu regulacji, doprowadzonego do granicy stabilności (metoda wzbudzenia układu), Może być stosowana do doboru nastaw regulatorów w układach regulacji obiektów zarówno statycznych jak i astatycznych z inercją wyższego rzędu. Wariant 2: tylko dla układów ze statycznymi obiektami regulacji, nastawy regulatora dobierane są na podstawie parametrów charakterystyki skokowej obiektu regulacji.

33 Metoda Zieglera-Nicholsa, wariant 1 Rysunek : Schemat funkcjonalny rzeczywistego układu regulacji

34 Metoda Zieglera-Nicholsa, wariant 1 - krok 1-3 / 6 Krok 1: W trybie sterowania ręcznego (tryb M), zmieniając sygnał sterujący u (CV), doprowadzić wielkość regulowaną y m (PV) do stanu, w którym zrówna się ona z wymaganą wartością zadaną. Krok 2: Ustawić regulator zainstalowany na obiekcie na działanie proporcjonalne (wyłączyć akcję całkującą i różniczkującą), ustawić punkt pracy regulatora równy nastawionej w ramach Kroku 1 wartości u oraz nastawić początkową wartość wzmocnienia regulatora k p > 0. Krok 3: Przełączyć układ na sterowanie automatyczne (tryb A) i jeżeli układ zachowuje stan równowagi, zadajnikiem SP wytworzyć impulsową zmianę wartości zadanej o amplitudzie i czasie trwania impulsu zależnym od spodziewanej dynamiki procesu; obserwować lub rejestrować zmiany wielkości regulowanej. Praktycy zalecają amplitudę impulsu o wartości 10% zakresu zmian sygnału y m (PV) i czas trwania impulsu równy około 10% szacowanej wartości zastępczej stałej czasowej obiektu.

35 Metoda Zieglera-Nicholsa, wariant 1 - krok 4-6 / 6 Krok 4:Jeżeli zmiany są gasnące, ustawiać coraz to większe wartości aż do wystąpienia w układzie stałych niegasnących oscylacji. Krok 5: Z zarejestrowanego przebiegu o niegasnącej amplitudzie, odczytać k pkryt. okres oscylacji T osc. Krok 6: Wprowadzić nastawy zgodnie z tablicą nastaw w. Zieglera-Nicholsa.

36 Metoda Zieglera-Nicholsa, wariant 1 Rysunek : Przebiegi zmian wielkości regulowanej PV uzyskiwane w trakcie eksperymentu Zieglera Nicholsa (wariant 1)

37 Metoda Zieglera-Nicholsa, wariant 1 Tabela nastaw regulatora PID wg. Zieglera-Nicholsa Rodzaj regulatora k p T i T d P 0, 50k pkryt. - - PI 0, 45k pkryt. 0, 8T osc PID 0, 60k pkryt. 0, 5T osc 0, 12T osc

38 Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

11. Dobór rodzaju, algorytmu i nastaw regulatora

11. Dobór rodzaju, algorytmu i nastaw regulatora 205 11. Dobór rodzaju, algorytmu i nastaw regulatora 11.1 Wybór rodzaju i algorytmu regulatora Poprawny wybór rodzaju regulatora i jego algorytmu uzależniony jest od znajomości (choćby przybliżonej) właściwości

Bardziej szczegółowo

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji

Bardziej szczegółowo

Ćwiczenie PAR2. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PAR2. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI LABORATORIUM AUTOMATYKI i ROBOTYKI Ćwiczenie PAR2 Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym Instrukcja laboratoryjna

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Rok akademicki 2015/2016 Semestr letni PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Wstęp teoretyczny: W układzie regulacji określa

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA8b Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg Instrukcja laboratoryjna

Bardziej szczegółowo

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie

Bardziej szczegółowo

Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA8b Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg Instrukcja laboratoryjna

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA

Bardziej szczegółowo

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora)

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora) Dr inż. Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem "syntezy

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

Regulator P (proporcjonalny)

Regulator P (proporcjonalny) Regulator P (proporcjonalny) Regulator P (Proportional Controller) składa się z jednego członu typu P (proporcjonalnego), którego transmitancję określa wzmocnienie: W regulatorze tym sygnał wyjściowy jest

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Podstawy automatyki i robotyki AREW001 Wykład 2 Układy regulacji i regulatory

Podstawy automatyki i robotyki AREW001 Wykład 2 Układy regulacji i regulatory Podstawy automatyki i robotyki AREW001 Wykład 2 Układy regulacji i regulatory Dr inż. Zbigniew Zajda Katedra Automatyki, Mechatroniki i Systemów Sterowania Wydział Elektroniki Politechniki Wrocławskiej

Bardziej szczegółowo

Praktyka inżynierska korzystamy z tego co mamy. regulator. zespół wykonawczy. obiekt (model) Konfiguracja regulatora

Praktyka inżynierska korzystamy z tego co mamy. regulator. zespół wykonawczy. obiekt (model) Konfiguracja regulatora raktyka inżynierska korzystamy z tego co mamy Urządzenia realizujące: - blok funkcyjny D w sterowniku LC - moduł D w sterowniku LC - regulator wielofunkcyjny - prosty regulator cyfrowy zadajnik S e CV

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr

Bardziej szczegółowo

Ćwiczenie PA5. Badanie serwomechanizmu połoŝenia z regulatorem PID

Ćwiczenie PA5. Badanie serwomechanizmu połoŝenia z regulatorem PID - laboratorium Ćwiczenie PA5 Badanie serwomechanizmu połoŝenia z regulatorem PID Instrukcja laboratoryjna Opracował : mgr inŝ. Arkadiusz Winnicki Człowiek - najlepsza inwestycja Projekt współfinansowany

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu 1. WSTĘP Serwomechanizmy są to przeważnie układy regulacji położenia. Są trzy główne typy zadań serwomechanizmów: - ruch point-to-point,

Bardziej szczegółowo

LAB-EL LB-760A: regulacja PID i procedura samostrojenia

LAB-EL LB-760A: regulacja PID i procedura samostrojenia Page 1 of 5 Copyright 2003-2010 LAB-EL Elektronika Laboratoryjna www.label.pl LAB-EL LB-760A: regulacja PID i procedura samostrojenia Nastawy regulatora PID W regulatorze LB-760A poczynając od wersji 7.1

Bardziej szczegółowo

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID.

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie KATEDRA AUTOMATYKI LABORATORIUM Aparatura Automatyzacji Ćwiczenie 4. Badanie charakterystyk skokowych regulatora PID. Wydział EAIiE kierunek

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ 1 1. Zadania regulatorów w układach regulacji automatycznej Do podstawowych zadań regulatorów w układach regulacji automatycznej należą: porównywanie wartości

Bardziej szczegółowo

(Wszystkie wyniki zapisywać na dysku Dane E:)

(Wszystkie wyniki zapisywać na dysku Dane E:) Cel ćwiczenia: Zapoznanie się z budową i zasadą działania PID oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA Temperatura mikrotermostatu

Bardziej szczegółowo

Laboratorium elementów automatyki i pomiarów w technologii chemicznej

Laboratorium elementów automatyki i pomiarów w technologii chemicznej POLITECHNIKA WROCŁAWSKA Wydziałowy Zakład Inżynierii Biomedycznej i Pomiarowej Laboratorium elementów automatyki i pomiarów w technologii chemicznej Instrukcja do ćwiczenia Regulacja dwupołożeniowa Wrocław

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.

Bardziej szczegółowo

Realizacje regulatorów PID w sterownikach PLC Siemens S7-1200

Realizacje regulatorów PID w sterownikach PLC Siemens S7-1200 D w sterownikach PLC Siemens S7-1200 Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania 2014/2015 Politechnika Gdańska Wydział Elektrotechniki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Laboratorium układów automatyki Temat ćwiczenia: Optymalizacja regulatora na podstawie krytycznego nastawienia regulatora wg Zieglera i Nicholsa. Symbol

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

Automatyka w inżynierii środowiska. Wykład 1

Automatyka w inżynierii środowiska. Wykład 1 Automatyka w inżynierii środowiska Wykład 1 Wstępne informacje Podstawa zaliczenia wykładu: kolokwium 21.01.2012 Obecność na wykładach: zalecana. Zakres tematyczny przedmiotu: (10 godzin wykładów) Standardowe

Bardziej szczegółowo

Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control

Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control Rozwiązując zadanie sterowania układu, automatyk powinien przede wszystkim sporządzić odpowiedni jego opis. Chcąc np. automatycznie sterować

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Zaliczenie - zagadnienia (aktualizacja )

Zaliczenie - zagadnienia (aktualizacja ) Tomasz Żabiński Ocena 3.0 Zaliczenie - zagadnienia (aktualizacja 23.01.2017) 1. Podaj na jakie dwie główne grupy dzieli się układy przełączające. 2. Scharakteryzuj układy kombinacyjne. 3. Scharakteryzuj

Bardziej szczegółowo

(Wszystkie wyniki zapisywać na dysku Dane E:)

(Wszystkie wyniki zapisywać na dysku Dane E:) Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwustanowego oraz ocena, jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

Sterowanie pracą reaktora chemicznego

Sterowanie pracą reaktora chemicznego Sterowanie pracą reaktora chemicznego Celem ćwiczenia jest opracowanie na sterowniku programowalnym programu realizującego jednopętlowy układ regulacji a następnie dobór nastaw regulatora zapewniających

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA. Wydział Elektroniki i Technik Informacyjnych

POLITECHNIKA WARSZAWSKA. Wydział Elektroniki i Technik Informacyjnych Rok akademicki 2008 POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych Instytut Automatyki i Informatyki Stosowanej Bartosz Goszczyński Nr indeksu : 182610 Weryfikacja algorytmów samostrojenia

Bardziej szczegółowo

UWAGA. Program i przebieg ćwiczenia:

UWAGA. Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Podział regulatorów: I. Regulatory elektroniczne: II. Regulatory bezpośredniego działania: III. Regulatory dwustawne i trójstawne:

Podział regulatorów: I. Regulatory elektroniczne: II. Regulatory bezpośredniego działania: III. Regulatory dwustawne i trójstawne: REGULATORY CK68 Nie można wyświetlić połączonego obrazu. Plik mógł zostać przeniesiony lub usunięty albo zmieniono jego nazwę. Sprawdź, czy łącze wskazuje poprawny plik i lokalizację. Zadania regulatorów

Bardziej szczegółowo

7.2.2 Zadania rozwiązane

7.2.2 Zadania rozwiązane 7.2.2 Zadania rozwiązane PRZYKŁAD 1 (DOBÓR REGULATORA) Do poniŝszego układu (rys.1) dobrać odpowiedni regulator tak, aby realizował poniŝsze załoŝenia: -likwidacja błędu statycznego, -zmniejszenie przeregulowania

Bardziej szczegółowo

(Wszystkie wyniki zapisywać na dysku Dane E:)

(Wszystkie wyniki zapisywać na dysku Dane E:) Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwustanowego oraz ocena, jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA

Bardziej szczegółowo

Badanie układu regulacji temperatury symulacja komputerowa. Stosuje się kilka podziałów klasyfikacyjnych układów automatycznej regulacji (UAR).

Badanie układu regulacji temperatury symulacja komputerowa. Stosuje się kilka podziałów klasyfikacyjnych układów automatycznej regulacji (UAR). Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne 3. WRAŻLIWOŚĆ I BŁĄD USTALONY Podstawowe wzory Wrażliwość Wrażliwość transmitancji względem parametru (3.1a) parametry nominalne (3.1b) Wrażliwość układu zamkniętego (3.2a) (3.2b) Uwaga. Dla Zmiana odpowiedzi

Bardziej szczegółowo

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy

Bardziej szczegółowo

Rozdział 22 Regulacja PID ogólnego przeznaczenia

Rozdział 22 Regulacja PID ogólnego przeznaczenia Rozdział 22 Regulacja ogólnego przeznaczenia 22.1 Wstęp do regulacji Metodologia otwartej pętli może być odpowiednia dla większości zastosowań dotyczących sterowania procesami. Dzieje się tak z uwagi na

Bardziej szczegółowo

Korekcja układów regulacji

Korekcja układów regulacji Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie

Bardziej szczegółowo

7. PNEUMATYCZNY REGULATOR PID WŁAŚCIWOŚCI STATYCZNE I DYNAMICZNE. Cel zadania: Zbadanie statycznych i dynamicznych właściwości przemysłowego,

7. PNEUMATYCZNY REGULATOR PID WŁAŚCIWOŚCI STATYCZNE I DYNAMICZNE. Cel zadania: Zbadanie statycznych i dynamicznych właściwości przemysłowego, 7. PNEUMATYCZNY REGULATOR PID WŁAŚCIWOŚCI STATYCZNE I DYNAMICZNE Cel zadania: Zbadanie statycznych i dynamicznych właściwości przemysłowego, pneumatycznego, analogowego regulatora PID. Poznanie działania

Bardziej szczegółowo

UKŁADY AUTOMATYCZNEJ REGULACJI MATERIAŁY POMOCNICZE DO ĆWICZEŃ LABORATORYJNYCH

UKŁADY AUTOMATYCZNEJ REGULACJI MATERIAŁY POMOCNICZE DO ĆWICZEŃ LABORATORYJNYCH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH UKŁADY AUTOMATYCZNEJ REGULACJI MATERIAŁY POMOCNICZE DO ĆWICZEŃ LABORATORYJNYCH

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

Wykład 1. Standardowe algorytmy regulacji i sterowania

Wykład 1. Standardowe algorytmy regulacji i sterowania Automatyka w Inżynierii Środowiska Wykład 1 Standardowe algorytmy regulacji i sterowania Wstępne informacje Podstawa zaliczenia wykładu: kolokwium 15.01.2011 Obecność na wykładach: zalecana. Zakres tematyczny

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

II. STEROWANIE I REGULACJA AUTOMATYCZNA

II. STEROWANIE I REGULACJA AUTOMATYCZNA II. STEROWANIE I REGULACJA AUTOMATYCZNA 1. STEROWANIE RĘCZNE W UKŁADZIE ZAMKNIĘTYM Schemat zamkniętego układu sterowania ręcznego przedstawia rysunek 1. Centralnym elementem układu jest obiekt sterowania

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Cel ćwiczenia: Podstawy teoretyczne:

Cel ćwiczenia: Podstawy teoretyczne: Cel ćwiczenia: Cele ćwiczenia jest zapoznanie się z pracą regulatorów dwawnych w układzie regulacji teperatury. Podstawy teoretyczne: Regulator dwawny (dwupołoŝeniowy) realizuje algoryt: U ( t) U1 U 2

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

REGULACJA DWUPOŁOŻENIOWA

REGULACJA DWUPOŁOŻENIOWA Ćwiczenie REGULACJA DWUPOŁOŻENIOWA 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie z budową, właściwościami regulacyjnymi i działaniem dwupołożeniowych (dwustanowych) układów regulacji. W szczególności

Bardziej szczegółowo

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7b Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg Instrukcja laboratoryjna Opracowanie

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Dobór nastaw regulatora

Dobór nastaw regulatora w.solnik, z.zajda Dobór nastaw regulatora Rozpoczęcie produkcji pneumatycznych regulatorów o strukturze PID (w ówczesnej terminologii P proportional, I automatic reset, D pre-act) w latach 3-tych i 4-tych

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna SEIwE- sem.4

Automatyka i Regulacja Automatyczna SEIwE- sem.4 Automatyka i Regulacja Automatyczna SEIwE- sem.4 Wykład 30/24h ( Lab.15/12h ) dr inż. Jan Deskur tel. 061665-2735(PP), 061 8776135 (dom) Jan.Deskur@put.poznan.pl (www.put.poznan.pl\~jan.deskur) Zakład

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7b Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr inż. Jakub Możaryn Michał Bezler Warszawa 2015 powietrza

Bardziej szczegółowo

(13)B3 (12) OPIS PATENTOWY (19) PL (11)

(13)B3 (12) OPIS PATENTOWY (19) PL (11) RZECZPOSPOLITA POLSKA (13)B3 (12) OPIS PATENTOWY (19) PL (11) 176704 (21) Numer zgłoszenia: 308623 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 15.05.1995 (61) Patent dodatkowy do patentu:

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7b powietrza przepływającego przez rurociąg Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr inż. Jakub Możaryn

Bardziej szczegółowo

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7a Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr

Bardziej szczegółowo

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności regulacyjnych regulatorów ciśnienia bezpośredniego

Bardziej szczegółowo

Opis modułu kształcenia Automatyka przemysłowa

Opis modułu kształcenia Automatyka przemysłowa Opis modułu kształcenia Automatyka przemysłowa Nazwa studiów podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku studiów, z którym jest związany

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Badanie układu regulacji poziomu cieczy

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Badanie układu regulacji poziomu cieczy Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr. 6 Badanie układu regulacji poziomu cieczy Laboratorium z przedmiotu: PODSTAWY AUTOMATYKI 2 Kod: ES1C400 031 Opracowanie:

Bardziej szczegółowo

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały

Bardziej szczegółowo

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera.

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera. 1. Celem projektu jest zaprojektowanie układu regulacji wykorzystującego regulator PI lub regulator PID, dla określonego obiektu składającego się z iloczynu dwóch transmitancji G 1 (s) i G 2 (s). Następnym

Bardziej szczegółowo