Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki"

Transkrypt

1 Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017

2 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele stanów stabilnych, histereza, straty energii w wyniku tarcia. W praktyce, dla uproszczenia opisu matematycznego przeprowadza się ich linearyzację, co pozwala na sformułowanie przybliżonego opisu liniowego zjawiska, ważnego w otoczeniu wybranego punktu pracy na charakterystyce statycznej (punkt ten odpowiada najczęściej nominalnym lub uśrednionym warunkom pracy układu). Stosowany aparat matematyczny: opis zjawiska w postaci równań różniczkowych, linearyzacja modelu, rachunek operatorowy- transmitancja operatorowa.

3 Metody opisu działania elementów (układów) liniowych Podstawowymi formami matematycznego opisu działania elementu (układu) są: równanie dynamiki, transmitancja operatorowa, równania stanu. W przypadku elementu (układu) o jednym sygnale wejściowym x(t) i jednym sygnale wyjściowym y(t) równanie dynamiki wyraża związek zachodzący pomiędzy sygnałem wyjściowym y(t) i sygnałem wejściowym x(t).

4 Metody opisu działania elementów (układów) liniowych Rysunek 1 : Proces - przyczynowo-skutkowy ciąg zdarzeń Posługując się przykładami kilku elementów elementów rozważmy pojęcia: sygnał, wielkość wejściowa, wielkość wyjściowa, sygnał wejściowy, sygnał wyjściowy.

5 Opis matematyczny układów liniowych - równania dynamiki Zasada superpozycji: f (x 1 + x 2 ) = f (x 1 ) + f (x 2 ), and f (0) = 0 (1) przestrzeń rozwiązań równania spełniającego zasadę superpozycji (5) jest przestrzenią liniową. Jednorodność (implikuje niezmienność skalowania): FInkcja f (x, y) jest jednorodna w stopniu k jeżeli. gdzie: β - stały współczynnik. Układ liniowy f (βx, βy) = β k f (x, y), and f (0) = 0 (2) Układ opisany funkcją jednorodną, w którym zachowana jest zasada superpozycji. Układ nieliniowy Układ, w którym nie jest zachowana jest zasada superpozycji i/lub nie jest opisany funkcją jednorodną.

6 Opis matematyczny układów liniowych - równania dynamiki Ogólna postać równania różniczkowego układu liniowego: d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (3) gdzie: y - sygnał wyjściowy, x - sygnał wejściowy, a i, b i - stałe współczynniki.

7 Elementy bezinercyjne Rysunek 2 : Element bezinercyjny - dzielnik napięcia Sygnał wejściowy x(t) - przebieg napięcia U 1 (t). Sygnałem wyjściowy y(t) - przebieg napięcia U 2 (t). Równanie dynamiki - zależność pomiędzy sygnałem wejściowym i sygnałem wyjściowym systemu: U 2 (t) = R 2 R 1 + R 2 U 1 (t) (4) Równanie elementu bezinercyjnego y(t) = kx(t) (5)

8 Elementy inercyjne Rysunek 3 : Elementy inercyjne - przykłady V dp a) 2(t) αrθ dt b) J dω(t) R dt c) L du 2(t) R dt Równanie elementu inercyjnego T dy(t) dt + p 2 (t) = p 1 (t) + ω(t) = 1 R M(t) + U 2 (t) = U 1 (t) + y(t) = kx(t) (6)

9 Charakterystyka statyczna Charakterystyka statyczna Charakterystyka statyczna f st przedstawia zależność sygnału wyjściowego układu y od sygnału wejściowego x w stanie ustalonym. Stan ustalony Stanem ustalonym nazywamy jest stan, w którym wszystkie pochodne sygnału wejściowego i sygnału wyjściowego są równe zero Rysunek 4 : Charakterystyka statyczna układu liniowego.

10 Linearyzacja Tworzenie opisu liniowego na podstawie opisu nieliniowego nazywa się linearyzacją. Linearyzacja opisu nieliniowego w postaci równań algebraicznych nazywa się linearyzacją statyczną. (brak pochodnych) Metody linearyzacji statycznej linearyzacja metodą siecznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym w określonym przedziale zmian zmiennej niezależnej. linearyzacja metodą stycznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym dla określonej wartości zmiennej niezależnej, a więc i określonej wartości zmiennej zależnej. Linearyzacja opisu nieliniowego w postaci równań różniczkowych nazywa się linearyzacją dynamiczną.

11 Linearyzacja statyczna Rysunek 5 : Linearyzacja statyczna; a) metoda siecznej, b) metoda stycznej. Ponieważ w automatyce rozważa się zachowanie układów w otoczeniu określonego punktu pracy, w dalszych rozważaniach przydatna jest linearyzacja metodą stycznej.

12 Linearyzacja metodą stycznej Przeprowadzony proces linearyzacji metodą stycznej polega na : zastąpieniu krzywej, reprezentującej nieliniową zależność y = f (x) styczną do niej w punkcie pracy, przeniesieniu początku układu współrzędnych do punktu pracy, zastąpieniu w modelu matematycznym zmiennych absolutnych x i y odchyleniami tych zmiennych od punktu pracy - zmiennymi przyrostowymi x i y. Charakterystyka statyczna wyznaczona na podstawie równania zlinearyzowanego względem określonego punktu pracy jest funkcją liniową. Można ją także wyznaczyć linearyzując charakterystykę rzeczywistą względem tego samego punktu pracy

13 Linearyzacja statyczna Przykład [do samodzielnego rozwiązania] Wyznaczyć zlinearyzowaną funkcję określającą zależność strumienia masy Q cieczy przepływającej przez zawór od ciśnień p1 i p2 oraz od odległości x grzybka od gniazda zaworu. Rysunek 6 : Przykład układu - linearyzacja statyczna.

14 Linearyzacja dynamiczna Przykład równania różniczkowego, będącego nieliniową zależnością pomiędzy funkcjami x(t) i y(t) i ich pochodnymi. F [y(t), ẏ(t), ÿ(t),..., y (n) (t), x, ẋ(t), ẍ(t),..., x (m) (t)] = 0 (7) Podczas linearyzacji dynamicznej funkcje x(t) i y(t) jak i ich pochodne traktuje się analogicznie jak zmienne funkcji uwikłanej. { n [ ] } { F m [ ] } F y (i) + x (j) = 0 (8) y (i) i=0 y (i) x (j) 0 j=0 x (j) 0 gdzie: y = y(t) y 0, ẏ = d y,..., y (n) = d n y dt dt n x = y(t) x 0, ẋ = d x dt,..., x (m) = d m x dt m

15 Linearyzacja dynamiczna - przykład Funkcja niejednorodna Przyjmując punkt pracy - {x 0, y 0 }, y 0 = f (x 0 ) Rozwinięcie w szereg Taylora w punkcie pracy y = mx + b (9) y = f (x) = f (x 0 ) + df dx (x x 0 ) x=x 0 + d 2 f 1! dx 2 (x x 0 ) 2 x=x (10) 2! prosta styczna (pierwsza pochodna) w punkcie pracy jest dobrą aproksymacją w małym zakresie zmian argumentu funkcji (wielkości wejściowej). Tak więc i ostatecznie y = f (x 0 ) + df dx x=x 0 (x x 0 ) = y 0 + m(x x 0 ) (11) y y 0 = m(x x 0 ) y = m x (12)

16 Przekształcenie Laplacea Zastąpienie równania różniczkowego transmitancją operatorową, przejście z dziedziny czasu rzeczywistego t na dziedzinę zmiennej zespolonej s. f (t) f (s), gdzie s = c + jω (13) gdzie: c - współczynnik części rzeczywistej, ω - współczynnik części urojonej. Przekształcenie Laplace a f (s) = L[f (t)] = 0 f (t)e st dt (14) Odwrotne przekształcenie Laplace a - całka Riemanna Mellina f (t) = L 1 [f (s)] = 1 2πj c+jω c jω F (s)e st ds (15)

17 Przekształcenie Laplacea Przekształcenie Laplace a, nazywane też transformatą Laplace a, wykorzystywana jest w automatyce do analizy układów. Jako narzędzie analizy graficznej wykorzystywana jest płaszczyzna zespolona S, na której mnożenie przez s daje efekt różniczkowania a dzielenie przez s całkowania. Analiza pierwiastków zespolonych równania liniowego, może ujawnić informacje na temat charakterystyk częstotliwościowych i na temat stabilności układu.

18 Przekształcenie Laplace a układów liniowych Aby można było wyznaczyć transformatę Laplace a funkcji muszą być spełnione następujące warunki: f (t) ma w każdym przedziale skończonym wartość skończoną, df (t) dt f (t) ma pochodną w każdym przedziale skończonym, istnieje zbiór liczb rzeczywistych C, dla których całka e ct jest absolutnie zbieżna. 0

19 Przekształcenie Laplace a układów liniowych d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m [ d n ] y L dt n dt m +b m 1 d m 1 x dt m 1 + +b 0x (16) = s n y(s) s n 1 y(0 + ) y n 1 (0 + ) (17) przy zerowych warunkach początkowych [ d n ] y L dt n = s n y(s) (18) Tak więc przekształcenie Laplace a układu liniowego przy zerowych warunkach początkowych przyjmuje postać y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (19)

20 Transmitancja operatorowa Transmitancja operatorowa Transmitancja operatorowa to stosunek transformaty sygnału wyjściowego do transformaty sygnału wejściowego przy zerowych warunkach początkowych y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (20) G(s) = y(s) x(s) = b ms m + b m 1 s m b 0 a n s n + a n 1 s n a 0 (21) przyjmuje się następujące oznaczenia oznaczenia licznik M(s) = b m s m + b m 1 s m b 0 (22) mianownik - tzw. równanie charakterystyczne N(s) = a n s n + a n 1 s n a 0 (23)

21 Wyznaczanie charakterystyki statycznej z transmitancji operatorowej x 0 = lim t x(t), na podstawie twierdzenia o wartości końcowej y 0 = lim y(t), (24) t y 0 = lim y(t) = lim sy(s) = lim sg(s)x(s) (25) t s 0 s 0 x 0 = const x(s) = 1 s x 0 (26) ostatecznie y 0 x 0 = lim s 0 G(s) (27) y 0 = b 0 a 0 x 0 (28)

22 Właściwości układów Właściwości dynamiczne prezentacja przebiegu wielkości wyjściowej y(t) po wprowadzeniu do układu wymuszenia x(t) Rysunek 7 : Postać charakterystyki dynamicznej układu.

23 Metody wyznaczania odpowiedzi układu dynamicznego d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (29) Klasyczna: Założenie warunków początkowych x(0), y(0) Rozwiązanie równań różniczkowych Operatorowa: f (t) = L 1 [y(s)] = L 1 [G(s)x(s)] (30) W zastosowaniach praktycznych do wykonywania transformacji prostej i odwrotnej, które są podstawowymi operacjami w rachunku operatorowym, zwykle nie zachodzi potrzeba wykorzystywania wzorów definicyjnych. Najczęściej wystarczy znajomość podstawowych własności przekształceń Laplace a i tablice transformat typowych funkcji zmiennej rzeczywistej.

24 Typowe sygnały wymuszające Wymuszenie skokowe jednostkowe (funkcja Heaveside a) x(t) = { 1(t) dla t 0 0 dla t < 0 x(s) = 1 s Wymuszenie skokowe o wartość stałą x(t) = { xst 1(t) dla t 0 0 dla t < 0 x(s) = x st 1 s Impuls - Delta Diraca x(t) = δ(t) = { 0 dla t 0 dla t = 0 x(s) = 1 Wymuszenie liniowo narastające x(t) = at x(s) = a s 2

25 Transmitancja operatorowa obiektów MIMO Rysunek 8 : Obiekt MIMO. Zapis wejść (p) i wyjść (r) w postaci wektorów U(s) = u 1 (s) u 2 (s). u p (s) p, Y (s) = y 1 (s) y 2 (s). y r (s) r (31)

26 Transmitancja operatorowa obiektów MIMO G MIMO (s) = Y (s) U(s) = Rysunek 9 : Obiekt MIMO. G 11 (s) G 12 (s)... G 2p (s) G 21 (s) G 22 (s)... G 2p (s).... G r1 (s) G r2 (s)... G rp (s) r p (32) G ij (s) = y i(s), gdzie i = 1,..., r, j = 1,..., p. (33) u j (s)

27 Współrzędne stanu Współrzędne stanu Współrzędne stanu to wielkości charakteryzujące zachowanie się układu dynamicznego, opisujące jego stan (np. położenie, prędkość, przyspieszenie). Wektor stanu Wektor stanu układu dynamicznego to minimalny zbiór współrzędnych stanu wystarczający łącznie ze znajomością wielkości wejściowych do określenia zachowania się układu w przyszłości. Liczba współrzędnych stanu jest równa rzędowi równania różniczkowego opisującego obiekt. Opis układów we współrzędnych stanu jest trudniejszy do interpretacji fizycznej niż opis w postaci transmitancji i niemożliwy do bezpośredniego określenia na drodze pomiarowej. Jest jednak wygodniejszy do celów modelowania oraz projektowania wielowymiarowych układów sterowania i regulacji.

28 Współrzędne stanu Współrzędne stanu Współrzędne stanu to wielkości charakteryzujące zachowanie się układu dynamicznego, opisujące jego stan (np. położenie, prędkość, przyspieszenie). Wektor stanu Wektor stanu układu dynamicznego to minimalny zbiór współrzędnych stanu wystarczający łącznie ze znajomością wielkości wejściowych do określenia zachowania się układu w przyszłości. Liczba współrzędnych stanu jest równa rzędowi równania różniczkowego opisującego obiekt. Opis układów we współrzędnych stanu jest trudniejszy do interpretacji fizycznej niż opis w postaci transmitancji i niemożliwy do bezpośredniego określenia na drodze pomiarowej. Jest jednak wygodniejszy do celów modelowania oraz projektowania wielowymiarowych układów sterowania i regulacji.

29 Równania stanu i wyjść Do wyznaczenia odpowiedzi na określone wymuszenie jednowymiarowego układu opisanego równaniem dynamiki n-tego rzędu, należy zdefiniować początkowy stan układu, czyli n warunków początkowych (n wartości pewnych zmiennych). Pod wpływam wymuszenia wartości tych zmiennych ulegają zmianom, jednoznacznie definiując stan dynamiczny układu w dowolnej chwili. Ogólna postać równania stanu - zmiany zmiennych stanu z n warunkami początkowymi: dx 1(t) dt = f 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x 1 (t 0 ) = x (34) dx q(t) dt = f q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x q (t 0 ) = x q0 Ogólna postać równania wyjść y 1 (t) = g 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t)... y r (t) = g q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t) (35)

30 Zlinearyzowane równania stanu i wyjść Po linearyzacji w otoczeniu wybranego stanu ustalonego (nominalnego punktu pracy - {x 0, y 0 }), równania przyjmują postać: d x 1(t) dt Zlinearyzowana postać równania stanu = q i=1 ( f1(t) x i )0 x i + p j=1 ( f1(t) u j )0 u j... d x q(t) dt = ( q fq(t) i=1 x i x i + )0 ( (36) p fq(t) j=1 u j u j )0 Zlinearyzowana postać równania wyjść y 1 = q i=1... y q = q i=1 ( g1(t) x i )0 ( gq(t) x i )0 x i + p j=1 ( g1(t) u j )0 u j x i + ( (37) p gq(t) j=1 u j u j )0

31 Postać macierzowa modelu zmiennych stanu Macierzowa postać równań stanu i wyjść { Ẋ (t) = ANL (X, U, t) Y (t) = C NL (X, U, t) Macierzowa postać zlinearyzowanych równań stanu i wyjść { Ẋ (t) = A(t)X (t) + B(t)U(t) Y (t) = C(t)X (t) + D(t)U(t) (38) (39) gdzie: A(t) R q q - macierz stanu, B(t) R q p - macierz wejść, C(t) R r q - macierz wyjść, D(t) R r p - macierz przenoszenia (transmisyjna). Przejście z zapisu macierzowego do zapisu transmitancyjnego G(s) = C [si A] 1 B + D (40)

32 Równania stanu układów liniowych Układ niestacjonarny Układ niestacjonarny to układ, którego wyjście zależy wprost od czasu - parametry układu zależą od czasu. Układ stacjonarny Układ stacjonarny to układ, którego wyjście nie zależy wprost od czasu. Rysunek 10 : Schemat blokowy układu linowych równań stacjonarnych

33 Przestrzeń stanów Przestrzeń stanów, przestrzeń fazowa Zbiór wszystkich możliwych wartości wektora stanu X (t) w chwilach t tworzy przestrzeń stanów układu (przestrzeń fazową). Rysunek 11 : Trajektoria fazowa - przykład trajektoria stanu Zbiór wartości wektora stanu układu w kolejnych chwilach czasu tworzy w tej przestrzeni krzywą, zwaną trajektorią stanu układu (trajektorią fazową).

34 Wyznaczanie równań stanu - metoda bezpośrenia Ogólna postać równania transmitancji układu liniowego: G(s) = b ms m + b m 1 s m b 0 s n + a n 1 s n a 0, n > m (41) Dzieląc licznik i mianownik (34) przez s n G(s) = b ms m n + b m 1 s m 1 n + + b 0 s n 1 + a n 1 s a 0 s n (42) Wprowadzając zmienną E(s) następująco G(s) = Y (s)e(s) E(s)U(s) (43) Y (s) E(s) = a n 1 s a 0 s n (44) E(s) U(s) = b ms m n + b m 1 s m 1 n + + b 0 s n (45)

35 Wyznaczanie równań stanu - metoda bezpośrenia Otrzymane równania E(s) = a 0 s n E(s) a n 1 s 1 E(s) + U(s) (46) Y (s) = b 0 s n E(s) + + b m 1 s m 1 n E(s) + b m s m n E(s) (47) Przyjmując fazowe zmienne stanu i równania stanu w postaci ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = e(t) (48) gdzie e(t) = L 1 [E(s)] (49)

36 Wyznaczanie równań stanu - metoda bezpośrenia Po przekształceniu Laplace a sx 1 (s) = x 2 (s) sx 2 (s) = x 3 (s)... sx n (s) = E(s) (50) Tak więc po uwzględnieniu zapisu w postaci zmiennych fazowych w przestrzeni zmiennych zespolonych S otrzymuje się E(s) = a 0 x 1 (s) a n 1 x n (s) + U(s) (51) Y (s) = b 0 x 1 (s) + + b m 1 x m (s) + b m x m+1 (s) (52) odpowiednio w dziedzinie czasu e(t) = a 0 x 1 (t) a n 1 x n (t) + u(t) (53) u(t) = b 0 x 1 (t) + + b m 1 x m (t) + b m x m+1 (t) (54)

37 Wyznaczanie równań stanu - metoda bezpośrenia Równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = a 0 x 1 (t) a n 1 x n (t) + u(t) Macierze równań stanu mają więc postać: A = a 0 a 1 a 2... a n 1 n n, B = n 1 (55) (56) C = [ b 0 b 1... b m... 0 ] 1 n, D = [0] 1 1

38 Równania stanu - element oscylacyjny Opis elementu oscylacyjnego w postaci transmitancji operatorowej kω 2 0 G(s) = s 2 + 2ξω 0 s + ω0 2 (57) lub w dziedzinie czasu u(t)kω 2 0 = d 2 y(t) dt 2 + dy(t) 2ξω 0 + y(t)ω0 2 (58) dt Powyższy układ jest opisany równaniem 2-go rzędu, więc wymaga q = 2 zmiennych stanu, definiujących stan układu w dowolnej chwili czasu. Korzystając z metody bezpośredniej otrzymuje się następujące równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = ω 0 x 1 (t) 2ξω 0 x 2 (t) + u(t) (59) równanie wyjścia y(t) = kω 0 x 1 (t) (60)

39 Równania stanu - element oscylacyjny Macierzowa postać zlinearyzowanych równań stanu i wyjść dla elementu oscylacyjnego { Ẋ (t) = A(t)X (t) + B(t)U(t) (61) Y (t) = C(t)X (t) + D(t)U(t) gdzie: [ A = X (t) = [ x1 (t) x 2 (t) 0 1 ω 2 0 2ξω 2 0 ], Y (t) = [ y(t) ], U(t) = [ u(t) ] (62) ] [ 0, B = 1 ], C = [ kω ], D = [0] (63)

40 Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

PODSTAWOWE CZŁONY DYNAMICZNE

PODSTAWOWE CZŁONY DYNAMICZNE PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY DYNAMICZNE 2. Kod przedmiotu: Esd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Modele i metody automatyki. Układy automatycznej regulacji UAR

Modele i metody automatyki. Układy automatycznej regulacji UAR Modele i metody automatyki Układy automatycznej regulacji UAR Możliwości i problemy jakie stwarzają zamknięte układy automatycznej regulacji powodują, że stały się one głównym obiektem zainteresowań automatyków.

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 2. REPREZENTACJA

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ Nazwa przedmiotu: Techniki symulacji Kod przedmiotu: ES1C300 015 Forma zajęć: pracownia specjalistyczna Kierunek: elektrotechnika Rodzaj studiów: stacjonarne, I stopnia (inŝynierskie) Semestr studiów:

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo