Teoria sterowania - studia niestacjonarne AiR 2 stopień

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Teoria sterowania - studia niestacjonarne AiR 2 stopień"

Transkrypt

1 Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe obiektu dynamicznego Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania

2 Interesuje nas: Odpowiedź obiektu liniowego stacjonarnego na wymuszenie sinusoidalne Potrafimy już znajdować: Odpowiedź w dziedzinie czasu, na dowolne wymuszenie i przy dowolnych warunkach początkowych Odpowiedź w dziedzinie zmiennej zespolonej s, na dowolne wymuszenie i przy dowolnych warunkach początkowych Przypadek szczególny: zerowy warunek początkowy, prowadzi do pojęcia transmitancji operatorowej u(t) U(s) Y R.R. G(s) s GsUs y(t) Y(s) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania

3 Przykładowy obiekt: t=0 L i L (t) i obc (t)=0 u L (t) i R (t) u we (t) u R (t) R u wy (t) Model matematyczny: L R du wy dt t t u t, u u wy 0 u wy, 0 wy we Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3

4 Dla: 0 u 0 uwy wy, 0 gdzie: G K s Y U,T s s L R U U wy we s s L R s K Ts Odpowiedź operatorowa układu: Y s GsUs Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4

5 Znajdźmy odpowiedź naszego przykładowego układu na wymuszenie sinusoidalne u t u t A sin t? we we y t uwy t Interesują nas odpowiedzi na pytania: czy odpowiedź układu będzie sinusoidalna dla t0 (ogólnie dla tt 0, gdzie t 0 - chwila początkowa obserwacji) co można będzie powiedzieć o stosunku amplitud sygnału wyjściowego i wejściowego - wzmocnieniu co można będzie powiedzieć o kątach fazowych sygnału wyjściowego i wejściowego przesunięciu fazowym Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5

6 Przedstawmy równanie różniczkowe modelu układu w postaci: du wy dt t K uwyt uwet, uwy0 u wy, 0 T T Rozwiązanie tego równania u wy (t) (odpowiedź układu) dla dowolnego wymuszenia u we (t) ma postać (patrz poprzednie wykłady): u wy K T T T T t u 0 e e e u d wy t t t 0 we (*) Składowa swobodna odpowiedzi Składowa wymuszona odpowiedzi Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6

7 Jaka będzie odpowiedź układu, jeżeli wymuszenie będzie miało postać: u we t A we sin t (**) t=0 L u L (t) i L (t) i obc (t)=0 i R (t) u we (t)=a we sinωt u R (t) R u wy (t)=? Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7

8 Podstawiając (**) do (*) u wy t u wy t K t T T, 0 e Awe e e T t 0 T sin d Można pokazać (dobre zadanie do samodzielnego wykonania), że odpowiedź układu na sinusoidalne wymuszenie ma postać: u wy t u wy, 0 e t T A we K T sin t Wniosek: odpowiedź układu na wymuszenie sinusoidalne nie jest sinusoidalna dla dowolnego t0 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8

9 Jeżeli interesujemy się odpowiedzią układu dla chwil t wystarczająco odległych od chwili t>>0 takich, że składowa swobodna będzie pomijalnie mała: t T, 0 u wy e sygnał odpowiedzi układu na wymuszenie 0 u we t A we sin t wyniesie u wy t A we K T sin t Odpowiedź częstotliwościowa układu Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9

10 u we Wejście Wyjście t A sin t u t A sin t we wy wy Wnioski: Odpowiedź ustalona układu liniowego stacjonarnego pobudzanego sygnałem sinusoidalnym o częstotliwości kątowej jest również sygnałem sinusoidalnym o tej samej częstotliwości gdzie: A wy A we K T tg T arctgt Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 0

11 u we Wejście Wyjście t A sin t u t A sin t we wy wy Wnioski: Amplituda odpowiedzi ustalonej układu jest różna od amplitudy wymuszenia i zależy od częstotliwości kątowej ω sygnału wymuszającego (poza oczywistą zależnością od parametrów układu) gdzie: A wy A we K T tg T arctgt Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania

12 u we Wejście Wyjście t A sin t we u wy t A wy sin t Wnioski: Kąt fazowy odpowiedzi ustalonej układu jest różny od kąta fazowego wymuszenia i zależy od częstotliwości kątowej ω sygnału wymuszającego (poza oczywistą zależnością od parametrów układu) gdzie: A wy A we K T tg T arctgt Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania

13 t u Awe sin t A we y t A sint wy T we t T wy A wy Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3

14 Policzmy: a. Stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego b. Różnicę kątów fazowych sygnału wyjściowego i sygnału wejściowego Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4

15 a. Amplituda sygnału wejściowego: Awe Amplituda sygnału wyjściowego: A wy Stosunek amplitud: A we K T A A wy we K T Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5

16 b. Kąt fazowy sygnału wejściowego: 0 Kąt fazowy sygnału wyjściowego: tan T Różnica kątów fazowych: 0 tan T Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6

17 Wróćmy do opisu dynamiki przykładowego układu za pomocą transmitancji operatorowej K=, T= G s s Moduł G(s) jest funkcją zespoloną zmiennej zespolonej s =σ+jω W szczególności jej wartości można obliczać dla s=jω jω σ Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7

18 Policzmy zatem wartości G dla s=j G j Gs s j jω G(jω n ) jω n jω jω G(jω ) G(jω ) σ Możemy poszukiwać dla G j przedstawienia w postaciach używanych dla liczb zespolonych -jω -jω -jω n Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8

19 Przykład : G s 0 s G j 0 j 0 0 j 0 j j j j 0 0 e jtan G(jω) ReG(jω) ImG(jω) G(jω) Przypomnieć sobie zasady rachunku liczb zespolonych!!! Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9

20 G Przykład : j j s G s s s 3 j j j j j j j 3 3 j 4 4 j j 4 4 j 4 j j 4 j 4 j 4 j ReG(jω) ImG(jω) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 0

21 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Wykonajmy eksperyment policzmy dla pokazanego na początku układu RL transmitancję dla s=j jt K j R L j s U j s U j s U j s Y j G s we wy Moduł: T K j s U j s Y j G s Faza: j T G s tan

22 Porównanie: - z odpowiedzi częstotliwościowej - z transmitancji widmowej A A wy we K T G s j K T tan T G s j tan T Wniosek:!!! Transmitancja dla s=j zawiera pełną informację o odpowiedziach częstotliwościowych (ustalonej odpowiedzi wymuszonej na sygnał sinusoidalny) układu dynamicznego dla różnych pulsacji ω Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania

23 Stąd: Transmitancja dla s=j stosowana jest jako narzędzie analizy układów dynamicznych i nosi nazwę transmitancji widmowej Definicja transmitancji widmowej G j Gs s j Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3

24 Matematycznie: G(jω) odwzorowuje dziedzinę (oś) pulsacji ω płaszczyznę zespoloną jω jω n jω G(jω n ) G(jω ) G(jω) G(jω ) ImG(jω) jω -jω σ ReG(jω) -jω -jω n Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4

25 Stosowane nazwy: G G j j - wzmocnienie amplitudowe, moduł - przesunięcie fazowe, faza Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5

26 A Przykład 3: wy 0 Gs ut sin3t s t 0; yt? G j 0 j j G j Awe A j3 G j3 wy G j3 0 j G j G j3 A.4rad we j6 0 tan deg Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6

27 Przykład 3: c.d. y Dyskusja: Jeżeli dla t 3.8 sin3t.4 t 0 G s 0 s to u t 0 y t 0 t 0 t 0 t 0 Jeżeli dla s 0 G ut sin t t 0 sin Element inercyjny zmniejsza amplitudę i wprowadza opóźnienie fazowe to y t Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7

28 Człon inercyjny jako filtr dolnoprzepustowy U s G s K Ts K Ts Y U s s Y s Y K Ts s Us TsYsYs KUs Dwustronnie odwrotne przekształcenie Laplace a T dy dt t y t Kut Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8

29 Odpowiedź na wymuszenie skokowe o amplitudzie A y t T K A Stała czasowa 0 t 0 Wzmocnienie statyczne styczna w t = t 0 Transmitancja widmowa G Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9 t K K KT jt T T j j Moduł: G Faza: Część rzeczywista P() j P Q G j arctg Q P K Część urojona Q() T arctgt

30 a) charakterystyka (częstotliwościowa) amplitudowa G j K T K K T b) charakterystyka (częstotliwościowa) fazowa G j arctgt T Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 30

31 Przykład 4: K, T 0s Mamy, 0. rad s T Niech wymuszenie: t u 5sin 0. 0t 00sin 50t u t u t wykorzystamy zasadę superpozycji y t t y t y t y y t Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3

32 Skorzystamy z właściwości działań na liczbach zespolonych przedstawionych w postaci wykładniczej Dla sygnału wymuszającego: u t Asin t Odpowiedź ustalona: y t Bsin t W dziedzinie częstotliwości dla obiektu o transmitancji G(j): Y Y W przykładzie: G j G j A j G j U j G j j K T G j arctgt Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3

33 Po podstawieniu danych przykładu: t 5sin0. t t 0sin t y 0 y 00 G j K T K K Składowa wymuszenia (wejścia) o częstotliwości poza przepustowością filtru została odrzucona! Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 33

34 Dlaczego interesują nas odpowiedzi częstotliwościowe? sygnały sinusoidalne są często wymuszeniami układów Dowolne sygnały dobrze aproksymują się za pomocą szeregów Fouriera Możliwość eksperymentalnego wyznaczenia transmitancji widmowej Oscylator u(t) Badany układ y(t) Rejestrator Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 34

35 G(jω) u(t) y(t) G(jω) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 35

36 Formy graficznego przedstawiania transmitancji widmowej charakterystyki częstotliwościowe Znane są następujące charakterystyki częstotliwościowe charakterystyka amplitudowo fazowa zwana charakterystyką Nyquist a ImG j Q ReG j P G j Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 36

37 charakterystyka amplitudowa (a) charakterystyka fazowa (b) G j G j Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 37

38 charakterystyka składowej rzeczywistej transmitancji (a) charakterystyka składowej urojonej transmitancji (b) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 38

39 charakterystyka logarytmiczna amplitudowa (a) charakterystyka logarytmiczna fazowa (b) 0lg G j zwane wykresami Bode a G j Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 39

40 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 40

41 Charakterystyki amplitudowo fazowe; wykresy Nyquist a Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4

42 Przykład 5: Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4

43 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 43

44 Charakterystyki logarytmiczne amplitudy i fazy; wykresy Bode a Transmitancję dowolnego elementu można przedstawić: Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 44

45 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 45

46 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 46

47 Przykładowo: Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 47

48 Szkicując charakterystyki asymptotyczne przyjmuje się zwykle zgrubnie: b a 0 Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 48

49 Charakterystyki amplitudy Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 49

50 Charakterystyka błędu modułu Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 50

51 Charakterystyki fazy Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5

52 Charakterystyki rzeczywiste i asymptotyczne Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5

53 Przykład 6: G s 0 s ω = 0 Moduł (db) Nachylenie -0dB/dek Pulsacja (rad/s) Faza (deg) Pulsacja (rad/s) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 53

54 Przykład 7: Gs s ω = 0 0 Moduł (db) Nachylenie 0dB/dek Pulsacja (rad/s) Faza (deg) Pulsacja (rad/s) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 54

55 Przykład 8: Pulsacja (rad/s) Faza (deg) Moduł (db) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 55

56 Dokładność aproksymacji: Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 56

57 Dziękuję za uwagę koniec materiału prezentowanego podczas wykładu Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 57

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

Sterowanie Serwonapędów Maszyn i Robotów

Sterowanie Serwonapędów Maszyn i Robotów Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe

Bardziej szczegółowo

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka

Bardziej szczegółowo

Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.

Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l. Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u =

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH Laboratorium Podstaw Metrologii BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jest: przybliżenie zagadnień dotyczących pomiarów wielkości zmiennych w czasie,

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Sterowanie przekształtników elektronicznych zima 2011/12

Sterowanie przekształtników elektronicznych zima 2011/12 Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco: Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Korekcja układów regulacji

Korekcja układów regulacji Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki godz. przyjęć: wtorki 9 5 Instytut Automatyki, ul. Stefanowskiego 8/22 środy 8 5 2 Zakład Techniki Sterowania, al.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Informatyczne Systemy Sterowania

Informatyczne Systemy Sterowania Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej

Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej mgr inż. Joanna Aleksiejuk 2016-09-19 Problemy gospodarki energią i środowiskiem w rolnictwie, leśnictwie i przemyśle spożywczym

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Z-ZIP-103z Podstawy automatyzacji Basics of automation

Z-ZIP-103z Podstawy automatyzacji Basics of automation KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-ZIP-103z Podstawy automatyzacji Basics of automation A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Rys 1 Schemat modelu masa- sprężyna- tłumik

Rys 1 Schemat modelu masa- sprężyna- tłumik Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].

Bardziej szczegółowo

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:

Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem: PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo