Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Podobne dokumenty
Wstęp do rachunku prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

Statystyka matematyczna

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Zmienna losowa. Rozkład skokowy

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

07DRAP - Zmienne losowe: dyskretne i ciągłe

Metody probabilistyczne

Rozkłady prawdopodobieństwa zmiennych losowych

Prawdopodobieństwo i statystyka

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Biostatystyka, # 3 /Weterynaria I/

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

Wykład 3 Jednowymiarowe zmienne losowe

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Jednowymiarowa zmienna losowa

Rozkłady prawdopodobieństwa

Rachunek prawdopodobieństwa i statystyka

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Metody probabilistyczne

Przestrzeń probabilistyczna

Prawdopodobieństwo i statystyka

Podstawy nauk przyrodniczych Matematyka

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

4,5. Dyskretne zmienne losowe (17.03; 31.03)

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

Rachunek Prawdopodobieństwa i Statystyka

Dyskretne zmienne losowe

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Elementy Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Zmienne losowe i ich rozkłady

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Metody probabilistyczne

1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Prawdopodobieństwo GEOMETRYCZNE

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Rachunek prawdopodobieństwa Rozdział 1. Wstęp

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

Wykład 2 Zmienne losowe i ich rozkłady

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

12DRAP - parametry rozkładów wielowymiarowych

Prawa wielkich liczb, centralne twierdzenia graniczne

Rachunek prawdopodobieństwa

Statystyka i eksploracja danych

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

Joanna Karłowska-Pik Procesy Poissona w geometrii stochastycznej

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rachunek prawdopodobieństwa- wykład 6

Ważne rozkłady i twierdzenia

Prawdopodobieństwo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

Statystyka w analizie i planowaniu eksperymentu

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Prawdopodobieństwo i statystyka

Statystyka. Magdalena Jakubek. kwiecień 2017

Zadania zestaw 1: Zadania zestaw 2

Sieci Mobilne i Bezprzewodowe laboratorium 1

Przykłady do zadania 3.1 :

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Najczęściej spotykane rozkłady dyskretne:

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

Laboratorium nr 7. Zmienne losowe typu skokowego.

Przykłady do zadania 6.1 :

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

Statystyka w analizie i planowaniu eksperymentu

Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

Transkrypt:

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska

Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona jest na co najwyżej przeliczalnej liczbie wartości nazywamy zmienną losową dyskretną

Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona jest na co najwyżej przeliczalnej liczbie wartości nazywamy zmienną losową dyskretną Przykład 1 Które wśród zmiennych: X wygrana Bolka w ruletkę (postawił na czerwone); Y liczba punktów Lolka przy strzale w tarczę; Z odległość strzału Lolka od środka tarczy; są zmiennymi losowymi dyskretnymi?

Definicja/Rozkład Definicja Dla zmiennej losowej X, dowolną liczbę rzeczywistą a R taką, że P X ({a}) = P (X = a) > 0 nazywamy atomem (rozkładu) zmiennej losowej X.

Definicja/Rozkład Przypomnienie Rozkładem zmiennej losowej X nazywamy miarę funkcję prawdopodobieństwa (wyposażonej w σ-ciało zbiorów borelowskich B(R)) zadaną wzorem ( {ω } ) P X (A) := P Ω : X (ω) A = P(X A) = P ( X 1 (A) ) dla dowolnego borelowskiego zbioru A B(R) Rozkład zmiennej losowej dyskretnej Niech A = {a 1, a 2,...} będzie zbiorem wszystkich atomów dyskretnej zamiennej losowej X. Wtedy P X (A) = P (X A) = 1 i aby podać rozkład zmiennej X wystarczy podać wartości: P X ({a 1 }) = P (X = a 1 ), P X ({a 2 }) = P (X = a 2 ),. Dlaczego?

Definicja/Rozkład Własności rozkładu zmiennej losowej dyskretnej Niech A = {a 1, a 2,...} będzie zbiorem wszystkich atomów (rozkładu) zamiennej losowej dyskretnej X. Wtedy 1 P X ({x}) = P (X = x) > 0 dla x A; 2 x A P X ({x}) = x A P (X = x) = 1.

Definicja/Rozkład Przykład 2 Podaj rozkład zmiennej X równej wygranej Bolka w ruletkę. Przykład 3 Podaj rozkład zmiennej Y równej liczbie punktów zdobytych przez Lolka w rzucie do celu.

Definicja/Rozkład Histogram Przykład 2 c.d. Narysuj histogram zmiennej X równej wygranej Bolka w ruletkę.

Definicja/Rozkład Dystrybuanta Przypomnienie Dystrybuantą zmiennej losowej X nazywamy funkcję F : R R daną wzorem F (a) = P X ((, a]) = P (X a). Dystrybuanta zmiennej losowej dyskretnej Dystrybuanta zmiennej losowej F : R R dyskretnej X skupionej na zbiorze wartości (atomów) {x 1, x 2,...} jest dana wzorem: F (a) = P (X a) = P X ({x i }) = P (X = x i ). x i a x i a

Definicja/Rozkład Dystrybuanta F (a) = P (X a) = P X ({x i }) = P (X = x i ). x i a x i a Przykład 4 Spójrz na dystrybuantę zmiennej X równej wygranej Bolka w ruletkę odnieś to co widzisz do powyższego wzoru.

Definicja/Rozkład Własności dystrybuanty zmiennej dyskretnej Przypomnienie Dystrybuanta F zmiennej losowej ma następujące własności: 1 jest niemalejąca; 2 F ( ) = lim t F (t) = 0, 3 F ( ) = lim t F (t) = 1; 4 jest prawostronnie ciągła, tzn. F (t) = lim s t + F (s) Własności dystrybuanty zmiennej losowej dyskretnej W dodatku, jeśli zmienna losowa jest dyskretna i jest skupiona na zbiorze atomów {x 1, x 2,...}, to jej dystrybuanta F jest funkcją schodkową (przedziałami stałą); z punktami nieciągłości w x 1, x 2,....

Przykłady rozkładów dyskretnych

r. jednopunktowy Rozkład jednopunktowy... Przykład 5a W urnie jest n (n s) kul czarnych (i nie ma żadnych innych kul). Z urny losujemy s kul. Niech X będzie liczbą wyciągniętych kul czarnych. Podaj rozkład zmiennej losowej X. Przykład 5b Magik ma jedną monetę, która ma na obu stronach Orła. Rzuca tą monetą s razy. Niech X będzie liczbą Orłów, które wypadły w trakcie eksperymentu. Podaj rozkład zmiennej losowej X.

r. jednopunktowy Rozkład jednopunktowy...... jest skupiony w jednym punkcie, powiedzmy s P X ({s}) = P(X = s) = 1 jeśli X ma taki rozkład, wówczas 1 s

r. dwupunktowy Rozkład dwupunktowy (Bernoulliego)... Przykład 6a W urnie jest N kul (N m), z tego m kul czarnych a pozostałe są białe (gdzie m/n = p). Z urny losujemy jedną kulę. Niech X będzie liczbą wyciągniętych kul czarnych. Podaj rozkład zmiennej losowej X. Przykład 6b Magik ma jedną monetę, na której Orzeł wypada z prawdopodobieństwem p. Magik rzuca monetą. Niech X będzie liczbą Orłów, które wypadły w trakcie eksperymentu. Podaj rozkład zmiennej losowej X.

r. dwupunktowy Rozkład dwupunktowy (Bernoulliego)...... jest skupiony na {0, 1}, jest opisywany przez parametr p, gdzie 0 p 1 X Be(p) gdy P X ({0}) = P (X = 0) = q = 1 p, P X ({1}) = P (X = 1) = p. p 1 p 0 1

r. dwumianowy Rozkład dwumianowy (Bernoulliego) Przykład 7a W urnie jest N kul (N m), z tego m kul czarnych a pozostałe są białe (gdzie m/n = p). Z urny losujemy kolejno ze zwracaniem n razy jedną kulę. Niech X będzie liczbą wyciągniętych kul czarnych. Podaj rozkład zmiennej losowej X. Przykład 7b Magik ma jedną monetę, na której Orzeł wypada z prawdopodobieństwem p. Magik rzuca monetą n razy. Niech X będzie liczbą Orłów, które wypadły w trakcie eksperymentu. Podaj rozkład zmiennej losowej X.

r. dwumianowy rozkład dwumianowy (Bernoulliego) Uwagi W obu powyższych przykładach X oznacza liczbę sukcesów w schemacie Bernoulliego z n doświadczeniami i prawdopodobieństwem sukcesu p, gdzie 0 p 1 jaki jest rozkład zmiennej X?

r. dwumianowy rozkład dwumianowy (Bernoulliego) Uwagi W obu powyższych przykładach X oznacza liczbę sukcesów w schemacie Bernoulliego z n doświadczeniami i prawdopodobieństwem sukcesu p, gdzie 0 p 1 jaki jest rozkład zmiennej X? X ma rozkład dyskretny skupiony na zbiorze {0, 1,..., n} X ma rozkład dwumianowy, X Bin(n, p) P X ({k}) = P(X = k) = ( ) n p k (1 p) n k, k dla k = 0, 1,..., n

r. dwumianowy Rozkład dwumianowy Jeśli X Bin(n, p), wówczas najbardziej prawdopodobna wartość (przynajmniej jeśli (n + 1)p / {0, 1, 2,... }) to (n + 1)p

r. dwumianowy Rozkład dwumianowy, n = 7, p = 0, 5 0.5 0.4 0.3 0.2 0.1 0 0 2 4 6 (7 + 1) 0, 5 = 4

r. dwumianowy Rozkład dwumianowy, n = 7, p = 0, 2 0.5 0.4 0.3 0.2 0.1 0 0 2 4 6 (7 + 1) 0, 2 = 1

r. dwumianowy Rozkład dwumianowy, n = 7, p = 0, 9 0.5 0.4 0.3 0.2 0.1 0 0 2 4 6 (7 + 1) 0, 9 = 7

r. Poissona Rozkład Poissona W urnie jest N kul (N m), z tego m kul czarnych a pozostałe są białe (gdzie m/n = p). Z urny losujemy kolejno ze zwracaniem n razy jedną kulę. Niech X będzie liczbą wyciągniętych kul czarnych. Podaj rozkład zmiennej losowej X. Magik ma jedną monetę, na której Orzeł wypada z prawdopodobieństwem p. Magik rzuca monetą n razy. Niech X będzie liczbą Orłów, które wypadły w trakcie eksperymentu. Podaj rozkład zmiennej losowej X. X ma rozkład dwumianowy Bin(n, p). Jak wygląda ten rozkład, gdy n jest bardzo duże a p bardzo małe, np. np λ, gdzie λ stała i n?

r. Poissona Rozkład Poissona X ma rozkład dwumianowy Bin(n, p) oraz np λ, gdzie λ stała dodatnia i n bardzo duuuuże? Dla ustalonego k oraz p = p n takiego, że np n λ, gdy n ( ) n P (X = k) = p k k n(1 p n ) n k

r. Poissona Rozkład Poissona X ma rozkład dwumianowy Bin(n, p) oraz np λ, gdzie λ stała dodatnia i n bardzo duuuuże? Dla ustalonego k oraz p = p n takiego, że np n λ, gdy n P (X = k) = = ( ) n p k k n(1 p n ) n k n! k!(n k)! ( ) k ( npn n 1 np n n ) n k

r. Poissona Rozkład Poissona X ma rozkład dwumianowy Bin(n, p) oraz np λ, gdzie λ stała dodatnia i n bardzo duuuuże? Dla ustalonego k oraz p = p n takiego, że np n λ, gdy n P (X = k) = = = ( ) n p k k n(1 p n ) n k n! k!(n k)! ( ) k ( npn n 1 np n n ( n... (n k + 1) (np n ) k n k k! ) n k 1 np n n ) n ( 1 np n n ) k

r. Poissona Rozkład Poissona X ma rozkład dwumianowy Bin(n, p) oraz np λ, gdzie λ stała dodatnia i n bardzo duuuuże? Dla ustalonego k oraz p = p n takiego, że np n λ, gdy n P (X = k) = = = ( ) n p k k n(1 p n ) n k n! k!(n k)! ( ) k ( npn n 1 np n n ( n... (n k + 1) (np n ) k n k k! 1 λk k! e λ 1 = λk k! e λ. ) n k 1 np n n ) n ( 1 np n n ) k

r. Poissona Rozkład Poissona - przykłady c.d. Przykład 8a W urnie jest 10000 kul, z tego 1 kula czarna a pozostałe są białe (tzn. p = m/n = 1/10000). Z urny losujemy kolejno ze zwracaniem 5000 razy jedną kulę. Niech X będzie liczbą wyciągniętych kul czarnych. Podaj rozkład zmiennej losowej X. Jakim rozkładem możemy przybliżyć rozkład zmiennej losowej X? Przykład 8b Magik ma jedną monetę, na której Orzeł wypada z prawdopodobieństwem p = 1/10000. Magik rzuca monetą 5000 razy. Niech X będzie liczbą Orłów, które wypadły w trakcie eksperymentu. Podaj rozkład zmiennej losowej X. Jakim rozkładem możemy przybliżyć rozkład zmiennej losowej X?

r. Poissona Rozkład Poissona Zmienna X ma rozkład Poissona z parametrem λ > 0 ozn. X Po(λ), gdy jest skupiona na zbiorze {0, 1, 2,... } i P X ({k}) = P(X = k) = e λ λk k!

r. Poissona Rozkład Poissona - inne przykłady Przykład 8c Do dużego ciasta wrzucamy ogromną liczbę rodzynków, po upieczeniu ciasto kroimy na równe części (skoro ciasto było ogromne to części jest niezmiernie dużo), jaki rozkład ma liczba rodzynków w kawałku ciasta?

r. Poissona Rozkład Poissona - inne przykłady Przykład 8c Do dużego ciasta wrzucamy ogromną liczbę rodzynków, po upieczeniu ciasto kroimy na równe części (skoro ciasto było ogromne to części jest niezmiernie dużo), jaki rozkład ma liczba rodzynków w kawałku ciasta? Przykład 8d Mierzymy liczbę zdenerwowanych klientów, którzy przyszli w ciągu dnia do banku; jaki rozkład ma ta liczba?

r. Poissona Rozkład Poissona - inne przykłady Przykład 8c Do dużego ciasta wrzucamy ogromną liczbę rodzynków, po upieczeniu ciasto kroimy na równe części (skoro ciasto było ogromne to części jest niezmiernie dużo), jaki rozkład ma liczba rodzynków w kawałku ciasta? Przykład 8d Mierzymy liczbę zdenerwowanych klientów, którzy przyszli w ciągu dnia do banku; jaki rozkład ma ta liczba? ogólnie: mamy dużą liczbę obiektów, każdy z nich ma małą szansę, że coś ciekawego się z nim stanie, każdy obiekt jest niezależny, pytamy: z iloma obiektami coś ciekawego się stało?

r. Poissona Rozkład Poissona λ = 0, 1 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7

r. Poissona Rozkład Poissona λ = 3 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7

r. Poissona Rozkład Poissona λ = 7 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7

r. geometryczny Rozkład geometryczny z parametrem 0 < p 1... Przykład 9a W urnie jest N kul (N m), z tego m kul czarnych a pozostałe są białe (gdzie m/n = p). Z urny losujemy kolejno ze zwracaniem jedną kulę, tak długo aż wyciągniemy kulę czarną. Niech X będzie liczbą wyciągniętych kul. Podaj rozkład zmiennej losowej X. Przykład 9b Magik ma jedną monetę, na której Orzeł wypada z prawdopodobieństwem p. Magik rzuca monetą tak długo aż uzyska Orła. Niech X będzie liczbą rzutów, które Magik wykonał w trakcie eksperymentu. Podaj rozkład zmiennej losowej X.

r. geometryczny Rozkład geometryczny z parametrem 0 < p 1... Uwagi W obu powyższych przykładach X oznacza liczbę prób Bernoulliego z prawdopodobieństwem sukcesu p, gdzie 0 p 1, wykonanych do uzyskania pierwszego sukcesu. jaki jest rozkład zmiennej X? Rozkład geometryczny z parametrem 0 < p 1, (ozn. geom(p)) jest skupiony na zbiorze {1, 2, 3,... } P X ({k}) = P(X = k) = (1 p) k 1 p, dla k = 1, 2, 3...

r. geometryczny Rozkład geometryczny p = 0, 9 1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8

r. geometryczny Rozkład geometryczny p = 0, 5 1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8

r. geometryczny Rozkład geometryczny p = 0, 1 1 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8

r. dwum. ujemny Rozkład ujemny dwumianowy Przykład 10a W urnie jest N kul (N m), z tego m kul czarnych a pozostałe są białe (gdzie m/n = p). Z urny losujemy kolejno ze zwracaniem jedną kulę, tak długo aż po raz r ty wyciągniemy kulę czarną. Niech X będzie liczbą wyciągniętych kul. Podaj rozkład zmiennej losowej X. Przykład 10b Magik ma jedną monetę, na której Orzeł wypada z prawdopodobieństwem p. Magik rzuca monetą tak długo aż po raz r ty uzyska Orła. Niech X będzie liczbą rzutów, które Magik wykonał trakcie eksperymentu. Podaj rozkład zmiennej losowej X.

r. dwum. ujemny Rozkład ujemny dwumianowy Rozważamy schemat Bernoulliego z prawdopodobieństwem sukcesu p, gdzie 0 p < 1; czekamy na r-ty sukces. Ile wykonaliśmy prób? Zmienna o rozkładzie ujemnym dwumianowym z parametrami r {1, 2,... } oraz 0 p < 1 jest skupiona na zbiorze {r, r + 1, r + 2,... }, P X ({k}) = P(X = k) = ( ) k 1 (1 p) k r p r, dla k = r, r +1,... r 1

r. dwum. ujemny Rozkład ujemny dwumianowy Rozważamy schemat Bernoulliego z prawdopodobieństwem sukcesu p, gdzie 0 p < 1; czekamy na r-ty sukces. Ile wykonaliśmy prób? Uwaga W klasycznych opracowaniach i podręcznikach rozkład ujemny dwumianowy definiuje się jako rozkład zmiennej losowej równej liczbie sukcesów w eksperymencie polegającym na oczekiwaniu na r tą porażkę. Istnieje prosta zależność między tym rozkładem a tym zdefiniowanym powyżej. My definiujemy tak, aby łatwiej było Państwu zauważyć związek między rozkładem geometrycznym a ujemnym dwumianowym.

r. hipergeom. Rozkład hipergeometryczny Przykład 11a W urnie jest N kul (N m), z tego m kul czarnych a pozostałe są białe. Z urny losujemy jednocześnie (kolejno bez zwracana) n kul (n m, n N m). Niech X będzie liczbą wyciągniętych kul czarnych. Podaj rozkład zmiennej losowej X.

r. hipergeom. Rozkład hipergeometryczny Mamy N elementów, spośród których m elementów jest specjalnych; losujemy n (n m, N m) różnych elementów tzn. losowanie jest bez zwracania / jednocześnie; jaki rozkład ma liczba wylosowanych specjalnych elementów? Zmienna losowa o rozkładzie hipergeometrycznym z parametrami: N, m, n jest skupiona na zbiorze {0, 1,..., n} ( m )( N m ) k n k P X ({k}) = P(X = k) = ( N dla k = 0, 1,..., n n)