07DRAP - Zmienne losowe: dyskretne i ciągłe
|
|
- Justyna Skowrońska
- 6 lat temu
- Przeglądów:
Transkrypt
1 07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego λ Poissona λ k k! e λ 0,,, λ λ geometryczny p ( p k p p,, p p ujemny dwumianowy hipergeometryczny p, r N, m, n ( k r p r ( p k r r r, r +, p ( m k( N m n k ( N n r( p p liczba doświadczeń do pierwszego sukcesu liczba doświadczeń do r tego sukcesu 0,,,, n liczba wylosowanych el typu I, jeśli losujemy jednocześnie n el z urny, w której jest N el z tego m el typu I Słynne rozkłady ciągłe nazwa rozkładu parametry gęstość E(X Var(X normalny N(m, σ f(x = wykładniczy λ f(x = jednostajny na odcinku [a, b] f(x = πσ λe λx dla x 0 e (x m σ m σ 0 w przeciwnym wypadku b a dla a x b 0 w przeciwnym wypadku UWAGA: Poniższe fakty nie są do końca formalnie odpowiednio sformułowane Fakt Niech X ma rozkład dwumianowy z parametrami n i p oraz np λ (tzn n jest duże a p małe, wtedy P (X = k λk k! e λ Fakt Niech X ma rozkład hipergeometryczny z parametrami N, m, n Jeżeli m/n i (N m/n są duże, to ( n ( m k ( P (X = k m n k k N N λ a+b λ (a b A Zadania na ćwiczenia Zadanie A W poprzednim zestawie w zadaniach A, A i A wyznaczyliśmy dystrybuanty trzech zmiennych losowych 0 dla x < A F (x = 9 dla x < 9 dla x < dla x Dla każdej z tych zmiennych losowych: podaj na jakim zbiorze jest skupiona; podaj wszystkie atomy rozkładów; A F (x = x dla 0 x < dla x rozstrzygnij czy jest dyskretna/ciągła/ani ciągła ani dyskretna; jeśli jest ciągła lub dyskretna podaj jej rozkład A F (x = x + dla 0 x < dla x
2 Zadanie A Niech X ma gęstość f(x = c( x dla < x < ; 0 dla pozostałych x a Znajdź c b Wyznacz P ( X /, P (X = 0 c Wyznacz dystrybauntę tej zmiennej losowej Zadanie A a Sprawdź, że ciąg p n = n n+ (n =, określa rozkład prawdopodobieństwa pewnej zmiennej losowej dyskretnej dla której P X (n} = P(X = n = p n b Wyznacz dystrybuantę zmiennej losowej X o tym rozkładzie Zadanie A4 Hurtownia zaopatruje 0 sklepów Każdy sklep przysyła w danym dniu zamówienie z prawdopodobieństwem 0,4 Sklepy są daleko od siebie, więc złożenie zamówienia przez sklep nie wpływa na złożenie zamówień przez inne sklepy Podaj rozkład zmiennej losowej, jaką jest dzienna liczba zamówień otrzymanych przez hurtownię Czy to jakiś słynny rozkład? Zadanie A Jak wiadomo, każda czekolada może zawierać śladowe ilości orzechów arachidowych W fabryce czekolady do kadzi z masą czekoladową, z której wyprodukowano 000 tabliczek czekolady wpadło 4000 mikroskopijnych odłamków orzeszków arachidowych Charlie kupił w sklepie czekoladę wyprodukowaną z masy z tej kadzi Jaki ma rozkład zmienna losowa równa liczbie odłamków orzeszka w tabliczce czekolady Charliego Ile w przybliżeniu wynosi prawdopodobieństwo, że natrafił na co najmniej trzy odłamki orzeszka Zadanie A6 W kasynie krupier tasuje 00 talii kart po karty (tzn 00 kart Następnie losuje a kolejno ze zwracaniem; b kolejno bez zwracania; 0 kart Niech X będzie liczbą wylosowanych Asów Wyznacz rozkład zmiennej losowej X Czy ten rozkład ma jakąś nazwę? Wyznacz P (X = 4 i porównaj wyniki w punktach a i b Zadanie A7 (bonus Pokazać, że zmienna losowa o rozkładzie geometrycznym wykładniczym ma własność braku pamięci, tzn P (X > n + k X > n = P (X > k B Zadania domowe Zadanie B Znajdź stałą c, dla której poniższy ciąg jest rozkładem prawdopodobieństwa pewnej zmiennej losowej a p i = c(/ i, i =,,, poza tym 0 b p i = ci, i =,, 6, poza tym 0 Podaj dystrybuantę zmiennej losowej X, dla której P X (i} = P (X = i = p i Zadanie B Podaj rozkład zmiennej losowej, której dystrybuanta dana jest wzorem: 0 dla x < ; 6 dla x < ; a F (x = dla x < 4; dla 4 x < 0; dla x 0 0 dla x < ; b F (x = x dla x Zadanie B Pięć kobiet i pięciu mężczyzn zostaje ustawionych w ranking na podstawie wyników egzaminu Zakładamy, że każdy wynik jest inny i wszystkie uporządkowania są jednakowo prawdopodobne Niech X będzie najwyższą pozycją w rankingu uzyskaną przez kobietę (np X =, jeśli na pierwszym miejscu jest kobieta Podaj rozkład zmiennej losowej X Zadanie B4 Łucznik strzela do tarczy do momentu trzeciego trafienia w 0 Wyznacz rozkład zmiennej losowej X równej liczbie oddanych strzałów, jeśli łucznik trafia w 0 przy każdym strzale niezależnie z prawdopodobieństwem / Czy ten rozkład ma jakąś szczególną nazwę
3 Zadanie B W losowaniu totolotka wybiera się 0 różnych liczb ze zbioru,, n} (n 0 Niech X oznacza najwiękaszą z wylosowanych liczb Podaj rozkład zmiennej losowej X Zadanie B6 Losujemy kart z talii Niech X będzie liczbą wylosowanych kierów Podaj rozkład zmiennej losowej X Czy X ma znany rozkład? Zadanie B7 Dla gęstości zmiennej losowej X f(x = znajdź P( X < i P(X < 9 oraz wyznacz jej dystrybuantę x /8 dla < x < ; 0 dla pozostałych x Zadanie B8 Zmienna losowa X posiada dystrybuantę: 0 dla x < 0 F (x = x dla 0 x dla x > Oblicz prawdopodobieństwa: P(X X, P(X X oraz wyznacz jej gęstość Zadanie B9 (Zad 4 Czy ta zmienna losowa ma rozkład ciągły/dyskretny? Zadanie B0 Dana jest zmienna losowa X o dystrybuancie: F (x = x dla 0 x < a dla x a Wyznacz wszystkie parametry a, dla których rozkład tej zmiennej losowej jest ciągły i wyznacz w tych przypadkach gęstość Zadanie B Zmienna losowa X posiada gęstość daną wzorem: 6x(x C dla x [0, ] f(x = 0 dla pozostałych x a Wyznacz stałą C b Wyznacz dystrybuantę zmiennej losowej X c Oblicz P(X < 4 dwoma sposobami: korzystając z gęstości oraz korzystając z dystrybuanty C Zadania dla chętnych Zadanie C Asia i Basia umówiły się w restauracji między 700 a 800 Każda z nich przychodzi w losowym momenie między 700 a 800 Wyznacz rozkład zmiennej losowej równej okresowi oczekiwania osoby, która przyszła pierwsza Zadanie C różnych liczb rozdano (po graczom o numerach,,, 4, Gdy gracze porównują swoje liczby, ten z większą liczbą jest zwycięzcą Najpierw gracze i porównują swoje liczby, a zwycięzca porównuje swoją z graczem itd Niech X oznacza liczbę zwycięstw gracza Znajdź rozkład prawdopodobieństwa P X Zadanie C Wykaż, że jeśli f i g są gęstościami, to, dla każdego 0 λ, funkcja λf + ( λg też jest gęstością Zadanie C4 Pokaż, że nie można tak wyważyć dwóch kostek do gry, by suma S wyrzuconych oczek miała rozkład równoprawdopodobny, tzn by P (S = i = dla wszystkich i =,, Zadanie C Dystrybuanta zmiennej losowej X jest dana wzorem 0 dla x < F (x = 6 (x + dla x < dla x Przedstaw F jako wypukłą kombinację liniową dystrybuant: dyskretnej F d i ciągłej F c Zadanie C6 Zad 6 4
4 Zadanie C7 Zad 7 4 Zadanie C8 Piekielny Piotruś hoduje bakterie Na początku w terrarium znajduje sie jedna bakteria Escherichia Coli oraz jedna bakteria Salmonella Enteritidis Jeden cykl rozmnażania polega na tym, że losowo wybrana bakteria (każda sposród bakterii obecnych w terrarium ma równe prawdopodobieństwo dzieli sie przez podział na dwie bakterie tego samego rodzaju (czyli np zamiast jednej bakterii Escherichia będa dwie bakterie Escherichia Powyżej opisane rozmnażanie jest powtarzane tak długo, aż łączna liczba wszystkich bakterii w terrarium będzie wynosiła dokładnie 0 (czyli sto miliardów Przez X oznaczamy liczbę bakterii Salmonella na samym końcu Znajdź rozkład zmiennej losowej X Jak zmieni się odpowiedź, gdy w terrarium znajdują się trzy bakterie Escherichia oraz pięć bakterii Salmonella? Zadanie C9 W urnie znajduje się ponumerowanych kul:,,, 4, } Losujemy różne z nich Niech a będzie największym numerem na wylosowanych kulach Jeśli a jest parzyste, to zapisujemy liczbę wlosowaną w sposób jednostajny z przedziału (a + Jeśli a jest nieparzyste, to zapisujemy a Niech X będzie zapisaną liczbą Wyznacz dystrybuantę F tej zmiennej losowej Czy jest ona dyskretna/ciągła? Jeśli tak, podaj jej rozkład Jeśli nie, zapisz jej dystrybuantę jako kombinację liniową dystrybuanty zmiennej losowej ciagłej i dystrybuanty zmiennej losowej dyskretnej Zadanie C0 Dana jest liczba naturalna k Rzucamy monetą do momentu aż wyrzucimy przynajmniej k reszek i przynajmniej k orłów Oznaczamy przez X liczbę rzutów Wyznacz rozkład zmiennej losowej X Zadanie C Wykonujemy rzut n monetami, z których na każdej wypada orzeł z prawdopodobieństwem p, niezależnie od pozostałych Rzucamy ponownie każdą monetą na której wypadł orzeł Jaki jest rozkład liczby orłów które wypadną w wyniku drugiego rzutu? Zadanie C Pokazać, że zmienna losowa o rozkładzie geometrycznym wykładniczym ma własność braku pamięci, tzn P (X > n + k X > n = P (X > k 4
5 Odpowiedzi do niektórych zadań B a c = /, b c = /, F (x = 0 dla x <, (/ x dla x, 0 dla x < / dla x < / dla x < F (x = 6/ dla x < 4 0/ dla 4 x < / dla x < 6 dla x 6 B ap (X = = /6, P (X = = /6, P (X = 4 = /6, P (X = 0 = / bp (X = = / oraz P (X = k = k k dla k = 4,, B P (X = k = ( k (0 k! 0!, k =,,, 4,, 6 B4 P (X = k = ( k (/ k (/, k =, 4,, uwaga: rozkład ujemny dwumianowy B P (X = k = ( ( k 9 / n 0, k = 0,, n B6 P (X = k = B7 /7, ( ( 9 k k (, k = 0,,,, 4, 0 dla t < t F (t = 4 + dla t dla t > B8 /, /4, B0 a = /4 0 dla x < 0 f(x = dla 0 x 0 dla x > 0 dla x 0 f(x = / x dla 0 < x < /4 0 dla x /4 B a C = b 0 dla a < 0 F (a = a a dla 0 a dla a > c /
07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Definicja Zmienna losowa (rozkład zmiennej losowej X jest skuiona na zbiorze S, jeśli P X (S = P (X S = (Podajemy najmniejszy lub najładniejszy taki zbiór Definicja
Bardziej szczegółowoZestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Bardziej szczegółowo12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowoRozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoPEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Bardziej szczegółowoc) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
Bardziej szczegółowoLista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowoZadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
Bardziej szczegółowoP (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoPODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Bardziej szczegółowoJeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Bardziej szczegółowoZmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoa. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
Bardziej szczegółowoMetody probabilistyczne
Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe
Bardziej szczegółowoĆwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Bardziej szczegółoworachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz
Bardziej szczegółowoc. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
Bardziej szczegółowoMATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Bardziej szczegółowoLista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Bardziej szczegółowoćwiczenia z rachunku prawdopodobieństwa
ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja
Bardziej szczegółowoNajczęściej spotykane rozkłady dyskretne:
I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoĆwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Bardziej szczegółowoMatematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Bardziej szczegółowoWybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Bardziej szczegółowoLaboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowoa)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.
Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów
Bardziej szczegółowoc) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
Bardziej szczegółowoPrzykłady do zadania 3.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,
Bardziej szczegółowop k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
Bardziej szczegółowo4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoDyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Bardziej szczegółowoZmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
Bardziej szczegółowoZmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Bardziej szczegółowoIII. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Bardziej szczegółowoX P 0,2 0,5 0,2 0,1
Zadanie 1 Zmienna losowa X ma rozkład: x -2 0 1 p 0,2 0,5 0,3 Wyznaczyć i narysować dystrybuantę tej zmiennej losowej. Zadanie 2 Zmienna losowa X ma rozkład: X -10 0 10 40 P 0,2 0,5 0,2 0,1 Podać wartość
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoa. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
Bardziej szczegółowoJednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Bardziej szczegółoworachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz
Bardziej szczegółowoElementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Bardziej szczegółowoTemat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Bardziej szczegółowoPrawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
Bardziej szczegółowoNa A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.
Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Bardziej szczegółowo1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona
Rachunek p-stwa 2010-2011 1 Rozklady dyskretne 1. Przeksztalcenia zmiennych losowych 2. Rozklad dwumianowy 3. Rozklad Poissona 4. Inne rozklady dyskretne 1 Przeksztalcenia zmiennych losowych Zmienna losowa
Bardziej szczegółowoZadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 2.
Zestaw. Zadanie.. Prawdziwa wiedza polega na zrozumieniu przyczyn Francis Bacon Zmienna losowa X może przyjmować podane poniżej wartości z określonym prawdopodobieństwem: x i 4 p i / /6 /6 / Przedstaw
Bardziej szczegółowoLista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne
Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty
Bardziej szczegółowoR_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Bardziej szczegółowoRozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Bardziej szczegółowoRzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:
Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat
Bardziej szczegółowoRozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Bardziej szczegółowoRozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
Bardziej szczegółowoBiologia Zadania przygotowawcze do drugiego kolokwium z matematyki
Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)
Bardziej szczegółowoZmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Bardziej szczegółowo02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Bardziej szczegółowoStatystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Bardziej szczegółowoMoneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Bardziej szczegółowoPrawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Bardziej szczegółowoWykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
Bardziej szczegółowoI. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi,
I. Kombinatoryka i prawdopodobieństwo I.1 Mała Lusia bawi się literkami A,A,A,E,K,M,M,T,T,Y ustawiając je w różnej kolejności. Jakie jest prawdopodobieństwo ustawienia wyrazu MATEMATYKA? I. Wśród funkcji
Bardziej szczegółowoII WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Bardziej szczegółowoP r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA
RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy
Bardziej szczegółowoNiech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
Bardziej szczegółowoWYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Bardziej szczegółowoMETODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Bardziej szczegółowoLista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL?
Statystyka i Rachunek Prawdopodobieństwa (Fizyka i Optyka) Lista zadań Marek Klonowski Wrocław 2015/16 Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? 2. Ile jest ciągów bitowych
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Bardziej szczegółowoDefinicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:
Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowoRachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoPodstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Bardziej szczegółowo3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej
Bardziej szczegółowoRachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Bardziej szczegółowo