Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
|
|
- Jarosław Kowalik
- 6 lat temu
- Przeglądów:
Transkrypt
1 Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska
2 Przykład 1 Alicja wylosowała jedną kartę z talii 54 kart (pełna talia z dwoma jokerami). Ile wynosi prawdopodobieństwo zdarzenia, że Alicja wylosowała króla? A Alicja wylosowała króla Rozwiązanie:
3 Przykład 1 Alicja wylosowała jedną kartę z talii 54 kart (pełna talia z dwoma jokerami). Ile wynosi prawdopodobieństwo zdarzenia, że Alicja wylosowała króla? Alicja poinformowała nas, że wylosowała pika ( ), ile wynosi teraz prawdopodobieństwo zdarzenia, że Alicja wylosowała króla? A Alicja wylosowała króla B Alicja wylosowała pika Rozwiązanie:
4 Morał1: przestrzeń warunkowa W przypadku prawdopodobieństwa klasycznego, dodatkowa informacja oznacza, że trzeba zmodyfikować przestrzeń zdarzeń elementarnych: (nowe Ω) = Ω B = B trzeba zmodyfikować zdarzenie sprzyjające: (nowe zdarzenie sprzyjające) = A B
5 Prawdopodobieństwo warunkowe Przykład 2 Alicja przychodzi do restauracji w losowym momencie między a Podobnie postępuje Bob. Jakie jest prawdopodobieństwo tego, że Alicja przyszła przed 18.15? Rozwiązanie: A Alicja przyszła przed 18.15
6 Prawdopodobieństwo warunkowe Przykład 2 Alicja przychodzi do restauracji w losowym momencie między a Podobnie postępuje Bob. Wiadomo, że Bob przyszedł pierwszy. Jakie jest prawdopodobieństwo tego, że Alicja przyszła przed 18.15? Rozwiązanie: A Alicja przyszła przed B Bob przyszedł pierwszy
7 Morał2: przestrzeń warunkowa W przypadku prawdopodobieństwa geometrycznego, dodatkowa informacja oznacza, że trzeba zmodyfikować przestrzeń zdarzeń elementarnych: (nowe Ω) = Ω B = B trzeba zmodyfikować zdarzenie sprzyjające: (nowe zdarzenie sprzyjające) = A B
8 Definicja prawdopodobieństwa warunkowego Definicja A oraz B są zdarzeniami losowymi, zakładamy, że P(B) > 0. Prawdopodobieństwem warunkowym zdarzenia A pod warunkiem zajścia zdarzenia B nazywamy liczbę P(A B) P(A B) =. P(B)
9 Definicja prawdopodobieństwa warunkowego Definicja przypomnienie P(A B) = P(A B). P(B) Przykład 3 Rzucamy niestandardową kostką, w której 1, 2, 3 oczka wypadają z prawdopodobieństwem 1 12 i 4, 5, 6 oczek wypadają z prawdopodobieństwem 1 4. Opisz przestrzeń prob. (Ω, F, P) opisującą ten eksperyment.
10 Definicja prawdopodobieństwa warunkowego Definicja przypomnienie P(A B) = P(A B). P(B) Przykład 3 Rzucamy niestandardową kostką, w której 1, 2, 3 oczka wypadają z prawdopodobieństwem 1 12 i 4, 5, 6 oczek wypadają z prawdopodobieństwem 1 4. Opisz przestrzeń prob. (Ω, F, P) opisującą ten eksperyment. Wiemy, że wypadła liczba oczek co najwyżej 4. Ile wynosi wtedy prawdopodobieństwo wyrzucenia: liczby nieparzystej?
11 Definicja prawdopodobieństwa warunkowego Morał3 Prawdopodobieństwo warunkowe zadaje nowy sposób losowania! prawdopodobieństwo warunkowe zadaje nową funkcję prawdopodobieństwa (miarę probabilistyczną) P B na podzbiorach Ω B = B: P B (A) = P(A B) W związku z tym mamy nową (warunkową) przestrzeń probabilistyczną (B, F B, P B ), gdzie F B = {A : F F A = F B}
12 Wzór łańcuchowy Przykład 4 Przypuśćmy, że urna zawiera 10 kul białych i 20 czarnych. Wybieramy kolejno bez zwracania 2 kule. Jakie jest prawdopodobieństwo, że obie wybrane kule są białe? Rozwiązanie 1: drzewkiem Rozwiązanie 2: C 1 pierwsza kula jest biała C 2 druga kula jest biała P (C 2 C 1 ) = P (C 1 C 2 ) P (C 1 )
13 Wzór łańcuchowy Twierdzenie (wzór łańcuchowy) Jeśli zdarzenia A 1,..., A n spełniają warunek P(A 1 A n 1 ) > 0, wówczas P(A 1 A n ) = Dowód: P(A 1 ) P(A 2 A 1 ) P(A 3 A 1 A 2 ) P(A n A 1 A n 1 )
14 Wzór łańcuchowy Twierdzenie (wzór łańcuchowy) Jeśli zdarzenia A 1,..., A n spełniają warunek P(A 1 A n 1 ) > 0, wówczas P(A 1 A n ) = Dowód: Przykład 5 P(A 1 ) P(A 2 A 1 ) P(A 3 A 1 A 2 ) P(A n A 1 A n 1 ) Przypuśćmy, że urna zawiera 10 kul białych i 20 czarnych. Wybieramy kolejno bez zwracania 4 kule. Jakie jest prawdopodobieństwo, że wszystkie wybrane kule są białe? Rozwiązanie:
15 Prawdopodobieństwo całkowite Przykład 6 Przypuśćmy, że urna zawiera 10 kul białych i 20 czarnych. Wybieramy losowo jedną kulę i jeśli jest biała to wrzucamy z powrotem. Jakie jest prawdopodobieństwo, że druga wybrana kula jest biała? Rozwiązanie drzewkiem : Rozwiązanie formalne:
16 Definicja Rozbiciem przestrzeni Ω nazywamy rodzinę (B i ) n i=1 = {B 1, B 2,..., B n } zdarzeń, które są parami rozłączne i których suma jest całą przestrzenią Ω. Tzn. 1 B i B j =, dla i j; 2 Ω = B 1 B 2... B n.
17 Definicja Rozbiciem przestrzeni Ω nazywamy rodzinę (B i ) n i=1 = {B 1, B 2,..., B n } zdarzeń, które są parami rozłączne i których suma jest całą przestrzenią Ω. Tzn. 1 B i B j =, dla i j; 2 Ω = B 1 B 2... B n. Twierdzenie (Wzór na prawdopodobieństwo całkowite) Jeśli (B i ) n i=1 jest rozbiciem Ω na zdarzenia o dodatnich prawdopodobieństwach, wówczas dla dowolnego zdarzenia A. n P(A) = P(B i ) P(A B i ) i=1 Dowód:
18 Wzór na prawdopodobieństwo całkowite przypomnienie Jeśli (B i ) n i=1 jest rozbiciem Ω na zdarzenia o dodatnich prawdopodobieństwach, wówczas dla dowolnego zdarzenia A Przykład 6 bis P(A) = n P(A B i ) P(B i ) i=1 Przypuśćmy, że urna zawiera 10 kul białych i 20 czarnych. Wybieramy losowo dwie kule i wszystkie wylosowane białe wrzucamy z powrotem. Jakie jest prawdopodobieństwo, że trzecia wybrana kula jest biała? Rozwiązanie:
19 Przykład 7 (Paradoks Monty ego Halla) W grze Idź na całość są trzy bramki. Za jedną kryje się samochód za dwiema pozostałymi koty (Zonki). W pierwszej turze grający wybiera jedną z bramek.
20 Przykład 7 (Paradoks Monty ego Halla) W grze Idź na całość są trzy bramki. Za jedną kryje się samochód za dwiema pozostałymi koty (Zonki). W pierwszej turze grający wybiera jedną z bramek. Następnie prowadzący odkrywa jedną z bramek, za którą kryje się kot. W tym momencie grający może zmienić bramkę. Czy mu się opłaca zamienić, czy zostać przy poprzedniej decyzji?
21 Przykład 7 (Paradoks Monty ego Halla) W grze Idź na całość są trzy bramki. Za jedną kryje się samochód za dwiema pozostałymi koty (Zonki). W pierwszej turze grający wybiera jedną z bramek. Następnie prowadzący odkrywa jedną z bramek, za którą kryje się kot. W tym momencie grający może zmienić bramkę. Czy mu się opłaca zamienić, czy zostać przy poprzedniej decyzji?
22 Przykład 8 Przypuśćmy, że urna zawiera 10 kul białych i 20 czarnych. Wybieramy losowo jedną kulę i jeśli jest biała wrzucamy z powrotem. Tym razem wiemy, że druga wybrana kula jest biała. Ile wynosi prawdopodobieństwo, że pierwsza wylosowana kula była czarna? Rozwiązanie bez specjalistycznych wzorów:
23 Twierdzenie (wzór Bayesa) Jeśli (B i ) jest rozbiciem Ω na zdarzenia o dodatnim prawdopodobieństwie oraz P(A) > 0, to P(B j A) = P(B j) P(A B j ) P(A) = P(A B j) P(B j ) i P(B i) P(A B i ) Dowód.
24 Twierdzenie (wzór Bayesa) Jeśli (B i ) jest rozbiciem Ω na zdarzenia o dodatnim prawdopodobieństwie oraz P(A) > 0, to P(B j A) = P(B j) P(A B j ) P(A) = P(A B j) P(B j ) i P(B i) P(A B i ) Dowód. Przykład 8 bis Przypuśćmy, że urna zawiera 10 kul białych i 20 czarnych. Wybieramy losowo dwie kule i wszytstkie białe wrzucamy z powrotem. Tym razem wiemy, że trzecia wybrana kula jest biała. Ile wynosi prawdopodobieństwo, że w pierwszym losowaniu wybralismy dwie czarne kule? Rozwiązanie korzystające ze wzoru Bayesa:
25 Przykład 9 Pewne małżeństwo zrobiło swojemu nienarodzonemu dziecku badanie prenatalne, które dało pozytywny wynik na obecność pewnej rzadkiej wady genetycznej (co osoba na nią cierpi). Wiadomo, że u chorych każdy wynik jest pozytywny a u zdrowych co 100 wynik daje fałszywy pozytywny wynik. Ile wynosi prawdopodobieństwo, że ich dziecko jest chore. Czy przyszli rodzice mają popadać w histerię czy raczej poczekać spokojnie do narodzin?
26 Przykład 9 Pewne małżeństwo zrobiło swojemu nienarodzonemu dziecku badanie prenatalne, które dało pozytywny wynik na obecność pewnej rzadkiej wady genetycznej (co osoba na nią cierpi). Wiadomo, że u chorych każdy wynik jest pozytywny a u zdrowych co 100 wynik daje fałszywy pozytywny wynik. Ile wynosi prawdopodobieństwo, że ich dziecko jest chore. Czy przyszli rodzice mają popadać w histerię czy raczej poczekać spokojnie do narodzin?
27 Przykład 10 Firma ubezpieczeniowa dzieli kierowców na trzy grupy: ostrożnych (10 % kierowców) przeciętnych (70%) i ryzykantów (20%). Z prowadzonych przez firmę statystyk wynika iż prawdopodobieństwo, że kierowca z danej grupy ma wypadek w okresie jednego roku wynosi: 0,1,0,2,0,9, odpowiednio w pierwszej, drugiej i trzeciej grupie. Franek w pierwszym roku ubezpieczenia spowodował wypadek, jakie jest prawdopodobieństwo, że należy do grupy ryzykantów?
28 Przykład 10 Firma ubezpieczeniowa dzieli kierowców na trzy grupy: ostrożnych (10 % kierowców) przeciętnych (70%) i ryzykantów (20%). Z prowadzonych przez firmę statystyk wynika iż prawdopodobieństwo, że kierowca z danej grupy ma wypadek w okresie jednego roku wynosi: 0,1,0,2,0,9, odpowiednio w pierwszej, drugiej i trzeciej grupie. Franek w pierwszym roku ubezpieczenia spowodował wypadek, jakie jest prawdopodobieństwo, że należy do grupy ryzykantów?
29 Przykład bonus 1 W urnie znajdują się 3 monety jedna zwykła, jedna z orłami po obu stronach i jedna z reszkami po obu stronach. Magik wyjmuje losowo jedną monetę i kładzie ją na stole. Widoczny jest orzeł. Ile wynosi prawdopodobieństwo, że po drugiej stronie też jest orzeł?
30 Przykład bonus 1 W urnie znajdują się 3 monety jedna zwykła, jedna z orłami po obu stronach i jedna z reszkami po obu stronach. Magik wyjmuje losowo jedną monetę i kładzie ją na stole. Widoczny jest orzeł. Ile wynosi prawdopodobieństwo, że po drugiej stronie też jest orzeł?
31 Przykład bonus 2 Uczciwa sześcienna kostka ma następujące napisy na bokach: wygrana (na 2 bokach), przegrana (na 3 bokach) i graj dalej (na 1 boku). Rzucamy kostką aż do definitywnej przegranej lub wygranej. Korzystając ze wzoru na prawdopodobieństwo całkowite wyznacz: szansę wygranej i szansę przegranej. Ile wynosi szansa na nieskończoną grę?
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.
Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;
05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na
04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,
04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:
Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Zdarzenie losowe (zdarzenie)
Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.0. Wstęp Katarzyna Rybarczyk-Krzywdzińska Wstęp Dlaczego prawdopodobieństwo klasyczne nie wystarcza? Jak opisać grę w ruletkę,
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b
DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;
Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.
Rachunek prawdopodobieństwa Rozdział 1. Wstęp
Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich
METODY PROBABILISTYCZNE I STATYSTYKA
Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym
Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Rachunek prawdopodobieństwa Rozdział 1. Wstęp
Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.0. Kilka słów na początek Katarzyna Rybarczyk-Krzywdzińska O czym mowa? Jakiego typu pytania będą nas interesować? Bolek, Lolek i Tola wstąpili do kasyna:
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń
Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.
Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,
PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.
Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa
PRAWDOPODOBIEŃSTWO WARUNKOWE
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRAWDOPODOBIEŃSTWO WARUNKOWE TWIERDZENIE O PRAWDOPODOBIEŃSTWIE CAŁKOWITYM Autor: Edward Stachowski Materiały
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.
IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.
Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,
rachunek prawdopodobieństwa - zadania
rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rachunek Prawdopodobieństwa i Statystyka Matematyczna
Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
1.1 Rachunek prawdopodobieństwa
Spis treści Spis treści 1 Wstęp 1 1.1 Rachunek prawdopodobieństwa.................. 1 1.2 Literatura.............................. 1 1.3 Podstawy.............................. 2 2 Miara prawdopodobieństwa
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Zadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
Prawdopodobieństwo zadania na sprawdzian
Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych
Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.
Zestaw 1. Zadanie. 1. Wyobraźnia jest ważniejsza od wiedzy A.Einstein Czy zdarzenia polegające na wyciągnięciu z talii liczącej 52 karty dowolnej karty pik (zdarzenie A) i wyciągnięciu asa (zdarzenie B)
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Rachunek Prawdopodobieństwa Brian Wynne podał następującą typologię zagrożeń znanych i niewiadomych: 1. ryzyko to wiadome nam przyszłe zagrożenia,
Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska
Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym M.Zalewska Podstawowe pojęcia Doświadczenie losowe obserwacja zjawiska, którego przebiegu nie umiemy w pełni przewidzieć. Możemy oceniać
Statystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
Prawdopodobieństwo. jest ilościową miarą niepewności
Prawdopodobieństwo jest ilościową miarą niepewności Eksperyment - zdarzenie elementarne Eksperymentem nazywamy proces, który prowadzi do jednego z możliwych wyników. Nazywamy je wynikami obserwacji, zdarzeniami
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x
Prawdopodobieństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźnie i wypełnia wnętrze kwadratu [0 x 1; 0 y 1]. Znajdź p-stwo, że dowolny
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
ćwiczenia z rachunku prawdopodobieństwa
ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania
2. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania Zad.2.. Oblicz ile moŝna utworzyć z cyfr 0,, 2, liczb: a) dwucyfrowych, których cyfry mogą się powtarzać; b) trzycyfrowych o niepowtarzających się cyfrach;
c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.
Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (
Laboratorium nr 1. Kombinatoryka
Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia
Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń
Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:
Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki
Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)
Rachunek prawdopodobieństwa dla informatyków
Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe
Podstawy Teorii Prawdopodobieństwa
Statystyka Opisowa z Demografią oraz Biostatystyka Podstawy Teorii Prawdopodobieństwa Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag
RACHUNEK PRAWDOPODOBIEŃSTWA
RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
Statystyka w analizie i planowaniu eksperymentu
5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
ALGEBRA ZDARZEŃ. PRZYKŁAD Ω = {ω 1, ω 2, ω 3, ω 4 } A = {ω 1, ω 2} DEFINICJA Mówimy, Ŝe zdarzenie elementarne w sprzyja zdarzeniu A (A Ω), jeŝeli ω A
ALGEBRA ZDARZEŃ Podobnie jak inne działy matematyki np. geometria, rachunek prawdopodobieństwa wychodzi z pewnych pojęć pierwotnych. Pojęciem pierwotnym rachunku prawdopodobieństwa jest zdarzenie elementarne,
= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
DOŚWIADCZENIA WIELOETAPOWE
. 4. DOŚWIADCZENIA WIELOETAPOWE Drzewem stochastycznym nazywamy graf ilustrujący przebieg wieloetapowego doświadczenia losowego. Wierzchołkom drzewa stochastycznego przyporządkowane są wyniki poszczególnych
15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda
1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
Metody probabilistyczne
Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe
07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego