Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a, b)) ϕ (a, b) dadb f(x, ) dxd, () gdzie ϕ : R 2 R 2 ϕ( ) oraz ϕ(a, b) (x(a, b), (a, b)) jest pewnm przekształceniem płaszczzn R 2 w siebie, spełniającm długą listę założeń, ϕ( ) {(x(a, b), (a, b)) R 2 : (a, b) } jest obrazem zbioru wznaczonm przez przekształcenie ϕ, a ϕ (a, b) x a (a, b) x b (a, b) a (a, b) b (a, b) jest jakobianem przekształcenia ϕ, czli wznacznikiem (funkcjnej w ogólnm przpadku) macierz pochodnch składowch przekształcenia ϕ, czli x a (a, b) dx(a, b) da pochodna x(a, b) ze względu na a prz ustalonm b itd. Zauważm jeszcze, że ϕ (a, b) to wartość bezwzględna jakobianu. Wśród założeń gwarantującch prawdziwość wzoru na całkowanie przez podstawiania, oprócz wmagań regularności podstawienia i wkonalności potrzebnch operacji (np. istnienia pochodnch wstępującch w jakobianie), jest też założenie o różnowartościowości podstawienia ϕ. Na wkładzie z rachunku prawdopodobieństwa i statstki, twierdzenie o całkowaniu przez podstawianie jest przjmowane jako rzecz dana, uzasadniona wcześniej. 2 Całka oissona i zadanie 2 z list 8 2. lan rozwiązania W zadaniu 2 z list 8 należ obliczć całkę oissona (?) I 2 dx (lub równoważną całkę od do z tej samej funkcji). Sens tego zadania polega na werfikacji znanego wzoru, prezentacji metod obliczania całek tego rodzaju,
2 ważnch, ale zwkle trudnch do wliczenia, wmagającch pomsłowch sposobów, a zwłaszcza na kolejnm ćwiczeniu stosowania wzoru na całkowanie przez podstawianie. Zamiast wżej podanej całki będziem liczć jej kwadrat ( I 2 2 dx ) ( ) e 2 2 d x 2 + 2 2 dxd. Licząc będziem korzstać z wzoru () na całkowanie przez podstawianie w sposób odwrotn niż zwkłe, komplikując (pozornie) wrażenie, biorąc f(x, ) + 2 2. Będziem starać się dobrać tak, ab ϕ( ) R 2. W ten sposób prawa strona wzoru () będzie interesującą nas całką. odstawienie będzie polegać na zamianie współrzędnch biegunowch na kartezjańskie, a więc będzie dane wzorami ϕ(r, θ) (x(r, θ), (r, θ)), gdzie x(r, θ) r cos θ i r sin θ. Łatwo wliczć jakobian podstawienia ϕ ϕ x (r, θ) r (r, θ) x θ (r, θ) r (r, θ) θ (r, θ) cos θ r sin θ sin θ r cos θ r(cos2 θ + sin 2 θ) r. onieważ ϕ( ) ma bć zbiorem wszstkich możliwch współrzędnch kartezjańskich, za można wziąć zbiór wszstkich możliwch współrzędnch biegunowch, czli chcielibśm przjąć [, ) [, 2π). Oczwiście, mam ϕ( ) R 2 (nawet dla dowolnego ). Zawieranie przeciwne jest znane i łatwo się je uzasadnia. Dla dowolnej par (x, ) R 2 bierzem r x 2 + 2. Liczbę θ znajdujem rozwiązując układ równań trgonometrcznch cos θ x x2 + 2, sin θ x2 + 2. Z ogólnej teorii takich równań, która powinna bć znana ze szkoł średniej (lub lepiej, z własności Darboux, która powinna bć znana z podstawowego wkładu z analiz matematcznej), otrzmujem, że ten układ równań ma rozwiązanie θ, dla którego mam ϕ(r, θ) (x, ). To dowodzi równości ϕ( ) R 2. odstawiając wszstkie powższe ustalenia do wzoru () otrzmujem x 2 + 2 2 dxd (r,θ)+ 2 (r,θ) 2 r drdθ e r2 2 r drdθ. Jest jeszcze drobne ptanie, cz te równości na pewno są prawdziwe. Zauważm, że jeżeli zamiast weźmiem [, ) [, 4π), to właściwie wszstko, co do tej por zostało powiedziane, pozostanie prawdziwe. Z drugiej stron, całka po prawej stronie powższego wzoru dla (zamiast ) będzie dwa raz większa, a to raczej nie powinno mieć miejsca. roponuję teraz ponowne przejrzenie powższego tekstu w poszukiwaniu usterek, które mogą mieć wpłw na prawdziwość obliczeń. Opisana wżej stuacja jest spowodowana tm, że nie sprawdziliśm istotnego założenia, jakim jest różnowartościowość podstawienia ϕ. Na zbiorze przekształcenie ϕ nie jest różnowartościowe, mam ϕ(, π) ϕ(, 3π) dla par (, π), (, 3π). Co więcej, tak jest również w wielu innch przpadkach.
3 rzekształcenie ϕ też nie jest różnowartościowe na zbiorze, mam ϕ(, π) ϕ(, π/2) dla par (, π), (, π/2). Radą jest dalsze zmniejszenie zbioru. owinniśm przjąć, że (, ) [, 2π), lub nawet (, ) (, 2π). Nietrudno sprawdzić, że w pierwszm przpadku ϕ( ) R 2 \{(, )}. W drugim ϕ( ) {(x, ) R 2 : x < } jest płaszczzną R 2 bez początku układu współrzędnch i dodatniej częścu osi x- ów. 2.2 Rozwiązanie zadania 2 z list 8 Weźm podstawienie ϕ(r, θ) (x(r, θ), (r, θ)), gdzie x(r, θ) r cos θ i r sin θ oraz zbiór Zauważm, że zachodzi wzór (, ) [, 2π). ϕ( ) R 2 \ {(, )}. rzstępujem do obliczenia interesującej nas całki: (2) x 2 + 2 2 dxd () + 2 2 dxd + 2 2 dxd R 2 \{(,)} ϕ( ) (r,θ)+ 2 (r,θ) 2 r drdθ (3) π e r2 (4) 2 2r dr π Uzasadnienie niektórch przejść: 2π e r2 2 r dθdr e r2 2 e t 2 dt 2πe t 2 2π. r ( 2π ) dθ dr () całka (oznaczona) nie zależ od wartości funkcji całkowanej w pojedńczm punkcie, (2) wnika z twierdzenia o całkowaniu przez podstawianie, x 2 (r, θ) to kwadrat wartości x(r, θ) podstawianej za x, korzstam też z wzoru ϕ (r, θ) r na jakobian podstawienia ϕ, (3) przejście od całki podwójnej do iterowanej, całkujem po zbiorze, w którm r przjmuje wartości dodatnie, z definicji podstawienia ϕ wnika, że x 2 (r, θ) + 2 (r, θ) r 2, (4) całkowanie przez podstawianie funkcji jednej zmiennej, podstawiane jest t(r) r 2. Z przeprowadzonch rachunków wnika, że I 2 dx 2π.
4 3 Zadanie z list 7 W zadaniu z list 7 mam dwuwmiarową zmienną losową (X, Y ), która ma rozkład jednostajn, o gęstości f(x, ) dla argumentów takich, że < x,. Mam znaleźć gęstość zmiennej Z X/Y. Rozwiązując to zadanie też możem skorzstać z twierdzenia o całkowaniu przez podstawianie. Dziedziną funkcji f niech będzie zbiór {(x, ) R 2 : < x, }. Najpierw trzeba wmślić podstawienie. Oczwiście podstawiam z(x, ) x. Drugą funkcją niech będzie t(x, ) (ta druga funkcja powinna umożliwiać przeprowadzanie łatwch rachunków). Będziem więc posługiwać się podstawieniem ϕ : R 2 R 2 oraz ϕ(x, ) (z(x, ), t(x, )) ( x, ). Od razu wliczm jakobian ϕ (x, ) z x (x, ) z (x, ) t x (x, ) t (x, ) x 2 i znajdźm ϕ( ). Jest to zbiór ϕ( ) {( x, ) R2 : < x, } {(z, t) R 2 : < t < z t }. lan rozwiązania jest następując: najpierw znajdujem gęstość dwuwmiarowej zmiennej losowej (Z, T ), a następnie, posługując się znalezioną gęstością znajdujem gęstość zmiennej Z. Ab w algortmizowan sposób wliczć gęstość par zmiennch (Z, T ), bierzem całkę f(x, ) dxd (gęstości zmiennch (X, Y )) i całkujem ją przez podstawianie podstawiając ϕ. Otrzmujem w ten sposób całkę z pewnej funkcji g(z, t), która jest gęstością dwuwmiarowej zmiennej (Z, T ). Metoda pierwsza. Biorę funkcję f(x, ) i jakoś przekształcam tak, ab otrzmać wrażenie postaci g(z(x, ), t(x, )) ϕ (x, ). Zwkle mnożę i dzielę f(x, ) przez jakobian, a później coś kombinuję: f(x, ) W naszm zadaniu (ponieważ > ) f(x, ) ϕ (x, ) ϕ (x, ) g(z(x, ), t(x, )) ϕ (x, ). f(x, ) t(x, ). Stąd na moc twierdzenia o całkowaniu przez podstawianie (wzór ()) f(x, ) dxd t(x, ) ϕ( dxd t dzdt )
5 i gęstością zmiennch (Z, T ) jest funkcja g(z, t) t, określona na zbiorze ϕ( ). Metoda druga, jeszcze bardziej zalgortmizowana. Wiedząc, jak zmienne Z i T zależą od X i Y, znajdujem zależność odwrotną, wrażam X i Y przez Z i T. W naszm zadaniu, Y T i X ZT (albo t i x zt). Znajdujem więc podstawienie odwrotne ϕ (z, t) (zt, t). iszem ϕ (x, ) dxd dzdt, a stąd, po formalnch przekształceniach otrzmujem dxd całkę f(x, ) dxd i podstawiam w niej wliczone wartości f(x, ) dxd ϕ( ) f(zt, t) dzdt ϕ (zt, t) ϕ( ) dzdt ϕ (x,) dzdt t. Teraz bierzem ϕ( ) t dzdt po uwzględnieniu wzorów na f i ϕ. Ab teraz wliczć gęstość zmiennej X wstarcz gęstość par (Z, T ) scałkować Y po t. Ab to zrobić trzeba dobrze wobrazić sobie zbiór ϕ( ) (można go sobie narsować). Dla całki z gęstości (Z, T ) mam ϕ( ) t dzdt t dtdz + z t dtdz. Stąd dla z (, ] gęstość f Z zmiennej Z dana jest wzorem a dla pozostałch z wzorem: f Z (z) f Z (z) z t dt t2 2 2, t dt t2 2 z 2z 2. Ostatecznie, gęstością zmiennej Z jest funkcja f Z taka, że f Z (z) jeżeli < z 2 jeżeli < z. 2z 2