Równania i nierówności wykładnicze i logarytmiczne
|
|
- Damian Zych
- 8 lat temu
- Przeglądów:
Transkrypt
1 Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego podstawowe własności. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie a nazywamy liczbę x spełniającą równanie a x = b. Piszemy wtedy x = log a b. Twierdzenie. Dla dowolnych a, b, c R +, a, mamy: (a) log a = 0, (b) log a a b = b, (c) a log a b = b, (d) log a (b c) = log a b + log a c, b (e) log a c = log a b log a c, (f) log a b k = k log a b dla dowolnego k R, (g) log a b = log c b log c a, c. Zadania obowiązkowe Szanowni Państwo, zgodnie z sugestiami w zadaniach i dodałem po jednym łatwym przykładzie (podpunkty a). Zdaję sobie sprawę, że w związku z ilością godzin przeznaczonych w repetytorium na równania i nierówności wykładnicze i logarytmiczne, zadań obowiązkowych może być za dużo. Z drugiej strony każde z nich jest inne, wymaga zastosowania innej metody postępowania (nie byłem tutaj zbyt oryginalny i częściowo wykorzystałem materiały ze starego repetytorium), więc nie chciałbym żadnego z nich wyrzucać. Proponuję zatem, aby do słowa obowiązkowe podeszli Państwo w tym przypadku z pewnym dystansem i ilość rozwiązanych na zajęciach zadań obowiązkowych uzależnili od swojego wyczucia, możliwości grupy itd. itp. Zadanie. Rozwiąż równania: a) x+ = 8 b) 8 x 5 0, 5 ( c) 6 x 7 x = 8, ) 6 5x = 0, d) ( + ) x = ( ) x, e) 5 x+ = x 5 x. Wskazówka: W podpunkcie a) zapisz 8 jako, w podpunkcie b) sprowadź potęgi w równaniu do tych samych podstaw, z kolei w podpunkcie c) jako wspólną podstawę przyjmij i podstaw t = x, w podpunkcie d) kluczową rolę odgrywa tożsamość ( + )( ) =, na koniec w podpunkcie e) zapisz liczbę 5 jako 5 i rozdziel potęgi o podstawie i o podstawie 5. Szkic rozwiązania. a) Mamy x+ = i wykorzystując różnowartościowość funkcji f (x) = x, dostajemy x =. b) Sprowadzając potęgi w równaniu do tych samych podstaw otrzymujemy ( ) 6 5x (x 5) =,
2 skąd 9x 5 = 7,5x. Ponieważ funkcja wykładnicza f (x) = x jest różnowartościowa, dostajemy 9x 5 = 7, 5x, skąd ostatecznie x =. c) Przyjmując w tym równaniu jako wspólną podstawę liczbę mamy Podstawiając t = x dostajemy ( x ) 7 x + 8 = 0. t 7t + 8 = 0. W konsekwencji t = lub t = 8 i ostatecznie x = lub x =. d) Kluczowa dla rozwiązania kolejnego równania jest równość ( + )( ) =, skąd dostajemy = + = ( + ). Zatem nasze równanie przybiera postać ( + ) x = ( + ) x. Po porównaniu wykładników otrzymujemy x = 5. Stąd e) W tym przypadku mamy Mnożąc stronami przez 5 x dostajemy 5 x+ x+ = x 5 x. x = 5 x 8 = (5 ) x =, ( ) x. 5 co zachodzi gdy x = 0, czyli x =. Odpowiedź: a) x =, b) x =, c) x = lub x =, d) x = 5, e) x =. Zadanie. Rozwiąż równania: a) log (x 5) = b) log x (x ) =, c) log 5 (x ) log 5 (x + ) =, d) x log x = 8, e) 5 log x log 9 x =. Wskazówka: Uwaga ogólna: pamiętaj o wyznaczeniu dziedziny równania. Ponadto, w podpunktach a) i b) skorzystaj z definicji logarytmu, podobnie w podpunkcie c) korzystając najpierw ze wzoru e) z Twierdzenia, w podpunkcie d) zlogarytmuj obie strony równania przy podstawie, dwa razy wykorzystaj wzór f) z Twierdzenia i w końcu podstaw t = log x, w podpunkcie e) wykorzystaj wzór g) z Twierdzenia Szkic rozwiązania. a) Dziedziną tego równania jest przedział (5, ). Z definicji logarytmu mamy x 5 =, skąd dostajemy x =
3 b) Dziedziną tego równania jest zbiór (, )\{} (x ((, ) (, )) (, )). Z definicji logarytmu możemy dane równanie zapisać w postaci lub równoważnie x = (x ), x x = 0. Rozwiązaniami równania kwadratowego są x = oraz x = +. Ponieważ <, ostatecznie otrzymujemy x = +. c) Dziedziną tego równania jest przedział (, ) (muszą być jednocześnie spełnione warunki x > 0 oraz x + > 0). Korzystając z własności logarytmu mamy lub równoważnie log 5 x x + =, log 5 (x ) = log 5 5, skąd (korzystając z faktu, że funkcja logarytmiczna jest różnowartościowa) x = 5. Zatem rozwiązaniem równania jest x = 6 (należy do dziedziny). d) Dziedziną tego równania jest zbiór R + \{}. Zlogarytmujmy obie strony równania przy podstawie log x log x = log 8. Dalej mamy ( log x ) log x =. Podstawiając t = log x, otrzymujemy równanie t t = 0, którego rozwiązaniami są t = lub t =. Stąd x = lub x = 8 (oba rozwiązania należą do dziedziny równania). e) Dziedziną tego równania jest zbiór R +. Korzystając z równości log 9 x = log x log 9 = log x dostajemy log x =. W konsekwencji log x =, czyli x = 7. Odpowiedź: a) x =, b) x = +, c) x = 6, d) x = lub x = 8, e) x = 7. Zadanie. Rozwiąż nierówności: a) ( ) x < 6, b) x+ 5 x >, c) log 7 log (x + ) > 0, d) log x ( x x). Wskazówka: Uwaga ogólna: pamiętaj, że funkcje f (x) = a x oraz g(x) = log a x są rosnące dla a > oraz malejące kiedy a (0, ). W podpunkcie a) sprowadź potęgi do tej samej podstawy, w b) podstaw t = x, w c) skorzystaj dwukrotnie z definicji logarytmu, a w d) rozważ dwa przypadki w zależności od x. Oczywiście, w podpunktach c) i d) wyznacz najpierw dziedziny nierówności. Szkic rozwiązania. a) Sprowadzając obie strony nierówności do tej samej podstawy otrzymujemy ( ) x ( ) <.
4 Ponieważ funkcja wykładnicza przy podstawie mniejszej od jest malejąca, dostajemy x >, skąd ostatecznie x (, ). b) W nierówności (x+ ) 5 x > podstawiamy t = x. Mamy t > 0. Rozwiązaniem nierówności kwadratowej t 5t + > 0 jest zbiór (, ) (, ), skąd wobec faktu, że t > 0, dostajemy (0, ) (, ). Ostatecznie x (, ) (, ). c) Dziedziną nierówności jest przedział (, 0) (muszą być jednocześnie spełnione warunki x + > 0 oraz log (x + ) > 0). Mamy log 7 log (x + ) > log 7, skąd po opuszczeniu logarytmu zewnętrznego o podstawie większej niż otrzymamy log (x + ) > = log Ponownie możemy opuścić logarytm, pamiętając o zmianie znaku nierówności na przeciwny (podstawa logarytmu jest mniejsza od ). Mamy zatem x + <, czyli x < 0. Po uwzględnieniu dziedziny, dostaniemy, że zbiorem rozwiązań nierówności jest przedział (, 0 ). d) Dziedziną nierówności jest zbiór (, )\{} (x x > 0, x > 0, x ). Po opuszczeniu logarytmów w nierówności ( log x x ) x log x x, zwrot otrzymanej nierówności zależy od wartości x. Zatem musimy rozważyć dwa przypadki. o < x <. Mamy x x x, czyli x 5 x 0, zatem x [ 5, 0] [ 5, ]. Ponieważ < x <, w rozważanym przypadku otrzymamy pusty zbiór rozwiązań. o x >. Rozwiązaniem nierówności x x x jest zbiór [, 5 ] [0, 5 ]. Ponieważ x >, dostajemy x (, 5 ]. Rozwiązaniem danej nierówności jest suma rozwiązań z poszczególnych przypadków czyli przedział (, 5 ]. Odpowiedź: a) x (, ), b) x (, ) (, ), c) x (, 0 ), d) x (, 5 ].. Zadanie. Rozwiąż równania: a) 8 7x+5 ( ) 9 x = 0, b) (0, 5) x ( ( ) x ) x+ =, c) x+ 5 x+ + = 0, d) x+ = 0 x+ 6, e) ( 7) x = 5 5x, f) x+ + 5 x = 5 x+ x. Zadania dodatkowe
5 Wskazówka: Powyższe równania można rozwiązać analogicznie jak odpowiednie równania z Zadania Odpowiedź: a) x = 7 65, b) x = 5, c) x = lub x =, d) x = lub x = 58, e) x =, f) x =. Zadanie 5. Rozwiąż równanie x + x +... = x+ 8. Wskazówka: Najpierw wyrażenie po lewej stronie przekształcamy wykorzystując wzór na sumę zbieżnego szeregu geometrycznego nieskończonego, potem podnosimy obie strony równania do kwadratu i w końcu rozwiązujemy równanie postępując analogicznie jak w Zadaniu b). Uwagi metodologiczne. Część absolwentów szkół średnich może nie znać wzoru na sumę zbieżnego szeregu geometrycznego nieskończonego. Rozwiązując to zadanie należy ten wzór wyprowadzić ze wzoru na sumę częściową szeregu geometrycznego nieskończonego. Odpowiedź: x = lub x =. Zadanie 6. Rozwiąż równania: a) log x+5 9 =, b) log [log (log x)] = 0, c) log x 5 + log x = log 0, d) log(x + 6) = log(x ) log 5, e) x log x = 00x, f) log 6 x + log x + log x = 7. Wskazówka: Powyższe równania można rozwiązać analogicznie jak odpowiednie równania z Zadania. Odpowiedź: a) x =, b) x = 8, c) x = 6, d) x = 6 lub x =, e) x = 0, lub x = 00, f) x=6. Zadanie 7. Rozwiąż równania: a) log x log x =, x b) log + x +... = log(x 5). Wskazówka: W pierwszym równaniu należy najpierw opuścić znaki wartości bezwzględnej i rozważyć odpowiednie przypadki, natomiast w równaniu drugim należy najpierw skorzystać ze wzoru na sumę zbieżnego szeregu geometrycznego nieskończonego. Szkic rozwiązania. W pierwszym równaniu należy najpierw opuścić znaki wartości bezwzględnej i rozważyć odpowiednie przypadki, natomiast w równaniu drugim należy najpierw skorzystać ze wzoru na sumę zbieżnego szeregu geometrycznego nieskończonego. Odpowiedź: x = 7 8 lub x =, b) x = 5. Zadanie 8. Rozwiąż nierówności: a) 0, 5 x x+, b) 9 x 8 x + 9 0, c)log 8 log x, d) log (x ) log (x + ) <, 5
6 e) log x+ x >. Wskazówka: Powyższe nierówności można rozwiązać analogicznie jak odpowiednie nierówności z Zadania. Odpowiedź: a) x [, ], b) x [, ], c) x (0, 9], d) x ( 5, ), e) x ( + 5, ). Zadanie 9. Rozwiąż nierówność log x + log x + 8 log x +... < log x. Wskazówka: Aby tradycji stało się zadość, także w tym zadaniu należy wykorzystać wzór na sumę zbieżnego szeregu ( ) geometrycznego nieskończonego. Odpowiedź: a) x,. 0 Zadanie 0. Rozwiąż równania: a) ( x ( ) ) x = 9 6, b) 5 x + = 5 x, c) x+ + 9 x+ = 80, d) 0x +0 x 0 x 0 x = 5, e) x 7 x = x+, Zadania domowe f) 6 x+ = x x+8. Odpowiedź: a) x = lub x = +, b) x = lub x =, c) x =, d) x = log 0, e) x =, f) x =. Zadanie. Rozwiąż równania: a) log x (x + x ) = b) log x log x + = 0 c) log(log x) log(log x ) = d) log ( x + ) = log log x e) log cos x (9 x ) = 0, f) x + log(5 x+ ) x log 5 log = 0. Odpowiedź: a) x = lub x =, b) x = lub x = 9, c) brak rozwiązań, d) x =, e) brak rozwiązań, f) x = lub x =. Zadanie. Rozwiąż nierówności: a) 5 x+ x > 5, b) x + x+ x < 0 c) log (x + ) log (x ) log 8 d) log x x >. 6
7 Odpowiedź: a) x (, ) (0, ), b) x (, 0), c) x (, ) [5, ), d) x (, ). Literatura (a) N. Dróbka, K. Szymański, Zbiór zadań z matematyki dla klasy III i IV liceum ogólnokształcącego, Wydawnictwa Szkolne i Pedagogiczne, Warszawa 97; (b) R. Kowalczyk, K. Niedziałomski, C. Obczyński, Matematyka dla studentów i kandydatów na wyższe uczelnie. Repetytorium, Wydawnictwo Naukowe PWN, Warszawa 0; (c) W. Leksiński, B. Macukow, W. Żakowski, Matematyka w zadaniach. Dla kandydatów na wyższe uczelnie, Wydawnictwo Naukowo-Techniczne, Warszawa 987; (d) J. Uryga, Nowa matura. Matematyka. Rozwiązywanie zadań, ParkEdukacja Nauka bez tajemnic,
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Równania i nierówności trygonometryczne
Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja.Niechaibbędądodatnimiliczbamirzeczywistymiiniecha.Logarytmemliczby bprzypodstawieanazywamyliczbęxspełniającąrównaniea
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech
III. Wstęp: Elementarne równania i nierówności
III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
3a. Wstęp: Elementarne równania i nierówności
3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
S n = a 1 1 qn,gdyq 1
Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM
Rozwiązania zadań z kolokwium w dniu 1.1.010r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = arc cos ( x + 1 x ) + Rozwiązanie. Wymagane są następujące
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz.
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Na początek wypiszmy elementy obu zbiorów: A jest zbiorem wszystkich liczb całkowitych, które podniesione
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Twierdzenia Rolle'a i Lagrange'a
Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Teoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Suriekcja, iniekcja, bijekcja. Autorzy: Anna Barbaszewska-Wiśniowska
Suriekcja, iniekcja, bijekcja Autorzy: Anna Barbaszewska-Wiśniowska 2017 Suriekcja, iniekcja, bijekcja Autor: Anna Barbaszewska-Wiśniowska DEFINICJA Definicja 1: Suriekcja czyli funkcja na Mówimy, że f
Wielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
Rozwiązaniem jest zbiór (, ] (5, )
FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Model odpowiedzi i schemat oceniania do arkusza II
Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Podstawianie zmiennej pomocniczej w równaniach i nie tylko
Tomasz Grębski Matematyka Podstawianie zmiennej pomocniczej w równaniach i nie tylko Zadania z rozwiązaniami Spis treści Wstęp... Typowe podstawienia... 6 Symbole używane w zbiorze... 7. Podstawienie zmiennej
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.
matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne
3.Funkcje elementarne - przypomnienie
3.Funkcje elementarne - przypomnienie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny3.Funkcje w Krakowie) elementarne - przypomnienie 1 / 51 1 Funkcje
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Wzory funkcji cyklometrycznych (kołowych)
Wzory funkcji cyklometrycznych (kołowych) Mateusz Kowalski www.kowalskimateusz.pl 19.07.01 Streszczenie Wzory funkcji cyklometrycznych wraz z wyprowadzeniami. 1 A co to za funkcje? Funkcje cyklometryczne
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Zadania z ekonomii matematycznej Teoria produkcji
Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Całka nieoznaczona, podstawowe wiadomości
Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA
Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Funkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Funkcje rzeczywiste jednej zmiennej rzeczywistej Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Definicje Funkcją (odwzorowaniem) f, odwzorowującą zbiór D w zbiór P nazywamy
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
Funkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład
In the paper we describe how to introduce the trigonometric functions using their functional characteristics and the Eisenstein series.
!" #$ %&' ( +*",-".0/1"3"4"5"67498:"5";=6?,@"A"-B5"-BCD4E?,@"
Jarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,
Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,
5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL. Podstawy matematyki szkolnej
RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL Podstawy matematyki szkolnej WAŁBRZYCH 01 Spis treści 1 Wstęp Równania stopnia drugiego.1 Teoria i przykłady............................. Podstawowe wzory skróconego
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
FUNKCJA WYMIERNA. Poziom podstawowy
FUNKCJA WYMIERNA Poziom podstawowy Zadanie Wykonaj działania i podaj niezbędne założenia: a+ a) + ; ( pkt.) a+ a a b) + + ; ( pkt.) + m m m c) :. ( pkt.) m m+ Zadanie ( pkt.) Oblicz wartość liczbową wyrażenia
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
7. Funkcje elementarne i ich własności.
Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Lista zagadnień omawianych na wykładzie w dn r. :
Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane
Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych. Autorzy: Anna Barbaszewska-Wiśniowska
Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych Autorzy: Anna Barbaszewska-Wiśniowska 09 Tożsamości cyklometryczne. Zadania z zastosowaniem funkcji cyklometrycznych Autor: Anna
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco