Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Podobne dokumenty
Estymacja przedziałowa

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste

Prawdopodobieństwo i statystyka r.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Lista 6. Estymacja punktowa

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

16 Przedziały ufności

θx θ 1, dla 0 < x < 1, 0, poza tym,

PODSTAWY BIOSTATYSTYKI ĆWICZENIA

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

STATYSTYKA I ANALIZA DANYCH

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Prawdopodobieństwo i statystyka r.

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

Statystyka. Katarzyna Chudy Laskowska

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

Statystyka Wzory I. Analiza struktury

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

Parametryczne Testy Istotności

Ekonometria Mirosław Wójciak

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

Statystyka matematyczna dla leśników

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

STATYSTYKA MATEMATYCZNA

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

STATYSTKA I ANALIZA DANYCH LAB II

ZADANIA NA ĆWICZENIA 3 I 4

0.1 ROZKŁADY WYBRANYCH STATYSTYK

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

ANALIZA DANYCH DYSKRETNYCH

STATYSTYKA MATEMATYCZNA

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Statystyka Matematyczna Anna Janicka

Zeszyty naukowe nr 9

KADD Metoda najmniejszych kwadratów

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Testowanie hipotez statystycznych.

Wykład 12 Testowanie hipotez dla współczynnika korelacji

PDF created with FinePrint pdffactory Pro trial version

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

Twierdzenia graniczne:

Statystyka Matematyczna Anna Janicka

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

Testowanie hipotez statystycznych.

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

STATYSTYKA OPISOWA PODSTAWOWE WZORY

ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych.

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Podstawowe pojęcia. Próba losowa. Badanie próby losowej

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Estymacja parametrów populacji

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2

WYKŁAD 8 ANALIZA REGRESJI

Estymacja przedziałowa:

Własności statystyczne regresji liniowej. Wykład 4

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

Wydział Matematyki. Testy zgodności. Wykład 03

METODY NUMERYCZNE dr inż. Mirosław Dziewoński

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

Estymacja przedziałowa - przedziały ufności

Spis treści 3 SPIS TREŚCI

Prawdopodobieństwo i statystyka r.

Podstawowe testy statystyczne i analiza zależności zjawisk

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

1 Twierdzenia o granicznym przejściu pod znakiem całki

Transkrypt:

Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej

Wykład 8. Badaie statystycze ze względu a dwie cechy X, Y cechy mierzale -elemetowa próbka par (x i, y i ), i=,, diagram korelacyjy przedstawieie graficze próbki w układzie współrzędych wstępe wioski o ewetualej zależości cech y a) y b) słaba zależość hiperbolicza y c) sila zależość liiowa brak zależości 0 x 0 x 0 x Rys.8.. Przykłady diagramów korelacyjych

Wykład Pomiar zależości Pojęcia wykorzystywae przy badaiu zależości Korelacja mierzy siłę (atężeie) zależości między cechami mierikiem zależości liiowej jest współczyik korelacji ρ -, Regresja ρ = zależość między cechami jest liiowa ρ = 0 cechy są ieskorelowae określa rodzaj zależości między cechami (liiowa, krzywoliiowa) podaje zależość fukcyją zależości, tz. wyzaczaa jest fukcja g taka, że cechę Y moża aproksymować przez g(x ) fukcję regresji g wyzacza się metodą ajmiejszych kwadratów, tz. tak, aby E [ Y g(x ) ] mi

Wykład Pomiar zależości (8.) Uwagi a) Jeżeli ρ(x,y ) =, to P ( Y = ax + b ) =, ale korelacja ie precyzuje wartości parametrów a i b (poza zakiem współczyika a) b) Jeżeli iezależe cechy X i Y mają rozkłady ormale, to wektor (X, Y ) ma dwuwymiarowy rozkład ormaly c) Jeżeli wektor (X, Y ) ma dwuwymiarowy rozkład ormaly, to a) cechy X i Y mają rozkłady ormale b) fukcja regresji jest liiowa

Wykład Estymacja współczyika korelacji X, Y dowole zmiee losowe Współczyik korelacji wyzaczamy ze wzoru Estymatorem zgodym współczyika korelacji ρ cech X i Y jest estymator R z próby gdzie są wariacjami z próby (8.) Uwagi a) Estymator R jest obciążoy, gdyż (( ) ( )) cov( X, Y ) E X EX Y EY ρ ( X, Y ) = = D X D Y D X D Y R = i= ( X ) ( ) i X Yi Y S S X = ( ) i ( ) i Y = i= i= i S X X S Y Y X Y E( R) ρ

Wykład Estymacja współczyika korelacji (8.) Uwagi cd. b) Realizację r estymatora R, zwaą współczyikiem korelacji z próbki wyzaczamy ze wzorów lub cov( x, y) xy x y r = = xy = xi y = s s s s, gdzie i x y x y r = i= ( x x) ( y y) ( x ) ( ) i x y i i i y = = dla daych iezgrupowaych i i i

Wykład Estymacja współczyika korelacji (8.) Uwagi cd. c) Dla próbek o liczości od około 30 wzwyż, buduje się tzw. tablicę korelacyją (dwudzielą, dwudzielczą), która jest dwuwymiarowym odpowiedikiem szeregu rozdzielczego przedziałowego X Y y d y g y d y g y kd y kg x d x g k x d x g k x wd x wg w w Wówczas oszacowaia parametrów występujących we wzorach oblicza się z próbki za pomocą sum ważoych, p. w k i= j= 0 0 0 0 xy x y, gdzie x, y to środki odpowiedich klas = i j ij i j wk

Wykład Estymacja współczyika korelacji (8.3) Przedział ufości dla współczyika korelacji Model (dwuwymiarowy rozkład ormaly, parametr iezay, 0) (X, Y ) wektor losowy o dwuwymiarowym rozkładzie ormalym, iezay współczyik korelacji ρ Jeśli 0, to statystyka Fishera + R Z = l, R < R ma w przybliżeiu rozkład ormaly N(m,σ), gdzie + ρ ρ m = EZ l +, σ ρ ( ) 3 W praktyce stosujemy zmieą + ρ U = Z l 3 ρ

Wykład Estymacja współczyika korelacji Wtedy dla α (0,) otrzymujemy α α ( ) α = P u( ) < U < u( ) α + ρ α = P u( ) < Z l 3 < u( ) ρ α α u( ) ( + ρ u ) = Z < l < Z + 3 ρ 3 Dla próbki (x i, y i ), i=,, otrzymujemy realizację przedziału ufości dla wartości oczekiwaej zmieej Z a poziomie ufości α: α α u( ) u( ) + r z, z +, gdzie z = l 3 3 r

Wykład Estymacja współczyika korelacji Ozaczając przez z i z doly i góry koiec przedziału, wyzaczamy graice przedziału (ρ, ρ ) dla współczyika korelacji ρ rozwiązując rówaia + ρ + ρ l = z i l = z ρ ρ Przykład W pewym doświadczeiu farmakologiczym bada się wpływ leku a przyrost ciśieia tęticzego krwi Podao 0 różych dawek x i leku i otrzymao astępujące przyrosty ciśieia krwi x i 0, 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 y i 5 5 5 35 5 30 55 65 65 55 Na poziomie ufości 0,9 wyzaczyć przedział ufości dla współczyika korelacji ρ

Wykład Estymacja współczyika korelacji Model (dwuwymiarowy rozkład ormaly, parametr iezay, duża próba 00) (X, Y ) wektor losowy o dwuwymiarowym rozkładzie ormalym, iezay współczyik korelacji ρ Jeśli 00, to statystyka R ρ U =, R < R ma w przybliżeiu rozkład ormaly N(0,) Na poziomie ufości α otrzymujemy realizację przedziału ufości dla ρ α r α r r u( ), r + u( )

Wykład Testy istotości dla współczyika korelacji (8.4) Weryfikacja hipotezy o (braku) korelacji między dwiema cechami Model (-wymiarowy rozkład ormaly, parametr iezay, 3) (X, Y ) wektor losowy o dwuwymiarowym rozkładzie ormalym, iezay współczyik korelacji ρ Jeśli 3, to statystyka R t =, R < R ma rozkład Studeta z stopiami swobody przy założeiu, że prawdziwa jest hipoteza zerowa H 0 : ρ = 0

Wykład 0 Weryfikacja hipotezy dla współczyika korelacji model Tablica 8.. Tablica testu dla współczyika korelacji model Hipoteza zerowa alteratywa H : ρ 0 H 0 : ρ = 0 H : ρ < 0 H : ρ > 0 Statystyka testowa t R, R R < Obszar krytyczy K ( ; t(, ) α α t(, ); ) ( ; t( α, ) t( α, ); )

Wykład Weryfikacja hipotezy dla współczyika korelacji model Przykład Wiedząc, że w poprzedim przykładzie (przyrost ciśieia krwi) współczyik korelacji z próbki 0-elemetowej wyiósł r = 0.9, zweryfikować hipotezę, że cechy (dawka leku i przyrost ciśieia krwi) są istotie skorelowae (poziom istotości 0.0)

Wykład Testy istotości dla współczyika korelacji Model (-wymiarowy rozkład ormaly, parametr iezay, 00) (X, Y ) wektor losowy o dwuwymiarowym rozkładzie ormalym, iezay współczyik korelacji ρ Jeśli 00, to statystyka R U =, R < R ma w przybliżeiu rozkład ormaly N(0,) przy założeiu, że prawdziwa jest hipoteza zerowa H 0 : ρ = 0 Ze względu a podobieństwo fukcji gęstości, obszary krytycze dla hipotez alteratywych H : ρ 0, H : ρ < 0, H : ρ > 0 wyzaczamy aalogiczie do modelu (ie uwzględiamy oczywiści stopi swobody)

Wykład Testy istotości dla współczyika korelacji Model 3 (-wymiarowy rozkład ormaly, parametr iezay, 0) (X, Y ) wektor losowy o dwuwymiarowym rozkładzie ormalym, iezay współczyik korelacji ρ Jeśli 0, to statystyka + R + ρ0 U = l l 3, R R < ρ0 ma w przybliżeiu rozkład ormaly N(0,) przy założeiu, że prawdziwa jest hipoteza zerowa H 0 : ρ = ρ 0 Obszary krytycze dla hipotez alteratywych H : ρ ρ 0, H : ρ < ρ 0, H : ρ > ρ 0 wyzaczamy jak w modelu

Wykład Estymacja i testy istotości dla współczyików regresji Diagram korelacyjy pozwala ituicyjie oszacować klasę fukcji regresji (liiowa, potęgowa, wykładicza itp.) a podstawie kocetracji puktów w bliskim otoczeiu hipotetyczych liii Fukcja regresji rzadko jest liiowa, ale jest to zależość ajwygodiejsza do oszacowaia i jest dobrym puktem wyjścia do dalszych badań (mimo świadomości popełieia pewych błędów)

Wykład Estymacja i testy istotości dla współczyików regresji Z rachuku prawdopodobieństwa wiadomo, że współczyiki liiowej fukcji regresji (II-go rodzaju) y = αx + β wyzaczamy ze wzorów α = cov( X, Y ) D Y ( X, Y ), EY EX D X = ρ D X β = α Zgodymi i ieobciążoymi estymatorami parametrów α i β z próby są odpowiedio SY A = R, B = Y αx S X Realizacje a i b estymatorów A i B odpowiedio wyzaczamy a podstawie próbki ze wzorów s ( x )( ) i x y y i i y = a = r =, b = y ax s x ( x ) i i x =

Wykład Estymacja i testy istotości dla współczyików regresji (8.5) Test istotości dla współczyika regresji liiowej α Model (dwuwymiarowy rozkład ormaly, parametr iezay, 3) (X, Y ) wektor losowy o dwuwymiarowym rozkładzie ormalym, iezae parametry Jeśli 3, to statystyka t = A α S Y 0 S X R ma rozkład Studeta z stopiami swobody przy założeiu, że prawdziwa jest hipoteza zerowa H 0 : α = α 0 Obszary krytycze dla hipotez alteratywych H : α α 0, H : α < α 0, H : α > α 0 wyzaczamy tak jak w tablicy 8. (model dla współczyika korelacji)

Wykład Estymacja i testy istotości dla współczyików regresji Przykład Badamy zależość między dawką awozu X (w kg) a wielkością przyrostu plou Y Dla 7 obserwacji otrzymao wyiki x i 3 4 5 6 7 y i 8 3 4 7 8 0 a) Oszacować liiową fukcję regresji pomiędzy dawką awozu X, a wielkością przyrostu plou Y Podać iterpretację współczyika regresji liiowej b) Sprawdzić testem serii liiową zależość między zmieymi (poziom istotości 0.0) c) Na poziomie istotości 0.0 zweryfikować hipotezę, że współczyik regresji w populacji jest dodati

Wykład Dziękuję za uwagę