Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html
Siły oporu (tarcia) są zwykle proporcjonalne do prędkości ciała*: F oporu rv r dx dt Oscylator mechaniczny w obecności sił tarcia (tłumienie): ma rv kx Obwód RLC (opór R odpowiada za tłumienie): L RI di dt q C * A przedtem było (patrz wykład 3.), że do kwadratu prędkości! Nieoduczeni ci wykładowcy, albo kłamią na wykładach
Ogólne równanie drgań tłumionych (straty energii na oporze ośrodka, proporcjonalne do pierwszej pochodnej zmiany położenia, czyli prędkości): x x x Dla oscylatora mechanicznego: r m k m
Ogólne rozwiązanie w postaci kombinacji liniowej rozwiązań szczególnych: t N x t N x t x 1 1 gdzie: t A x1, 1, exp t
t A x1, 1, exp Rodzaje rozwiązań: 1) dla oba pierwiastki są rzeczywiste i ujemne, więc rozwiązaniem jest aperiodyczne, wykładnicze malenie x od A do zera; t ) dla występuje tzw. tłumienie krytyczne jest to minimalna wartość tłumienia, przy której ruch jest aperiodyczny;
x 1, Rodzaje rozwiązań: 3) dla mamy drgania gasnące oscylacje o zanikającej amplitudzie: A exp t A x1, 1, exp t exp i t t
Ograniczając się do jednego rozwiązania (znak plus przy fazie) i pisząc rozwiązanie w postaci funkcji harmonicznej: A x t A exp t r m t A exp t t sin nazywamy amplitudą drgań gasnących; to współczynnik tłumienia; to częstość własna drgań układu tłumionego; k m to częstość drgań swobodnych układu;
x t A exp t sin t Drgania gasnące są drganiami nieokreślonymi nigdy nie powtarzają się największe wartości wychylenia, prędkości, przyspieszenia. Dlatego tylko umownie można nazwać częstością kątową w tym sensie, że wskazuje ona, ile razy w ciągu sekund drgający układ przechodzi przez położenie równowagi! Podobnie: T nazwiemy umownym okresem drgań gasnących.
Współczynnik tłumienia mówi nam o stosunku kolejnych amplitud drgań gasnących: A A n n1 exp T Logarytm naturalny stosunku amplitud dwóch kolejnych wychyleń, następujących po sobie w odstępie czasu T (umownego okresu) nazywamy logarytmicznym dekrementem tłumienia : ln A A n n1 T
Oznaczmy przez odstęp czasu, w ciągu którego amplituda drgań zmniejszy się e-krotnie. Wtedy: 1 albo: 1 czyli: współczynnik tłumienia jest wielkością fizyczną równą odwrotności odstępu czasu, w ciągu którego amplituda zmniejsza się e-razy. Czas nazywamy czasem relaksacji. Podobnie: gdy przez N oznaczymy liczbę drgań, po wykonaniu których amplituda zmaleje e-razy, okaże się, że: czyli: dekrement logarytmiczny tłumienia jest wielkością równą odwrotności liczby drgań, po upływie których amplituda zmniejszy się e-razy. 1 N
DRGANIA WYMUSZONE Oprócz siły sprężystej i siły oporu, działamy na układ dodatkową siłą okresową siłą wymuszającą F: F t F cos t Ogólne równanie ruchu oscylatora mechanicznego przybiera wtedy postać: d x m dt r dx dt kx Jest to równanie różniczkowe niejednorodne. F cost
DRGANIA WYMUSZONE d x m dt r dx dt Spodziewamy się rozwiązania powyższego równania różniczkowego w postaci drgania harmonicznego z częstością, równą częstości siły wymuszającej F, ale amplituda tych drgań powinna zawierać informacje o masie m, tłumieniu i wielkości siły wymuszającej F a także częstości własnej układu : kx F cos t xt Asin t m F??
DRGANIA WYMUSZONE Można pokazać, że: A m 4 F Amplituda A ustalonych drgań wymuszonych jest wprost proporcjonalna do amplitudy siły wymuszającej F i odwrotnie proporcjonalna do masy m układu oraz zmniejsza się wraz ze wzrostem współczynnika tłumienia. Faza początkowa ma teraz sens różnicy faz między amplitudą drgań wymuszonych A i amplitudą siły wymuszającej F ściślej: ponieważ użyliśmy funkcji cosinus do opisu siły wymuszającej i funkcji sinus do opisu drgania x(t), to szukaną różnicą faz będzie: tan
DRGANIA WYMUSZONE Analizując wyrażenie na amplitudę drgań wymuszonych: A m 4 F możemy zauważyć, że w przypadku braku tłumienia (=), gdy częstość siły wymuszającej F równa jest częstości drgań własnych układu, amplituda ta rośnie do nieskończoności!
DRGANIA WYMUSZONE Natomiast w obecności tłumienia, maksimum wyrażenia na amplitudę A uzyskamy dla: Zjawisko to nazywamy rezonansem. Ale co to jest rezonans? Niedobry wykładowca nie podał definicji, żeby ją na ściądze zapisać
DRGANIA WYMUSZONE Przykład obwodu elektrycznego: siła elektromotoryczna, wymuszająca drgania, jest równa: E t exp it Wtedy: równanie opisujące ruch ładunku elektrycznego w obwodzie (= prąd elektryczny!): d q L dt Rozwiązanie ogólne w postaci: gdzie: q L q q dq R dt exp i t q C R L exp it R / L tg