Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem danego pojęcia. Przykładowe zadania - Teoria : 1. Napisz warunek konieczny zbieżności szeregu. Podaj przykład szeregu a n, dla którego lim a n = 0 i szereg jest zbieżny oraz przykład szeregu b n, dla którego lim n n b n = 0 i szereg jest rozbieżny. 2. Wypisz znane Ci kryteria zbieżności szeregów o wyrazach nieujemnych. 3. Jaki szereg nazywamy geometrycznym? Wypisz znane Ci twierdzenia dotyczące szeregów geometrycznych. 4. Jaki szereg nazywamy harmonicznym? Wypisz znane Ci twierdzenia dotyczące szeregów harmonicznych. 5. Opisz kryterium całkowe badania zbieżności szeregów liczbowych o wyrazach nieujemnych. Korzystając z niego zbadaj zbiezość szeregu 1, gdzie k > 0. n=1 nk 6. Napisz twierdzenie Leibniza o zbieżności szeregu naprzemiennego. Zdefiniuj bezwzględną i warunkową zbieżność. Określ rodzaj zbieżności szeregów ( 1) n oraz ( 1) n. n=1 n n=1 n 2 7. Zdefiniuj bezwzględną i warunkową zbieżność. Podaj przykład szeregu warunkowo zbieżnego oraz przykład szeregu bezwzględnie zbieżnego. 8. Jaką macierz nazywamy trójkątną? Napisz przykład macierzy trójkątnej o wyznaczniku niezerowym. 9. Jaką macierz nazywamy symetryczną? Napisz przykład macierzy symetrycznej. 10. Jaką macierz nazywamy diagonalną? Napisz przykład macierzy diagonalnej. 11. Jakie warunki muszą spełniać macierze kwadratowe stopnia drugiego A, B i C, aby równanie macierzowe A X B = C posiadało rozwiązanie. Wyznacz macierz X.
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 2 12. Wiadomo, że w przypadku macierzy na ogół A B B A. Podaj przykłady macierzy, w przypadku których zachodzi przemienność mnożenia. 13. Napisz twierdzenie Cramera. Opisz co można powiedzieć o rozwiązalności układu n równań liniowych z n niewiadomymi w przypadku, gdy wyznacznik główny układu będzie miał wartość 0. 14. Podaj i opisz jakie są zależności pomiędzy liczbą rozwiązań układu równań liniowych, a rzędem macierzy głównej i uzupełnionej tego układu. 15. Podaj twierdzenie Kroneckera-Capellego. Opisz, czy możliwe jest wyznaczenie takiej wartości parametru k, aby układ x + k y z = 0 był sprzeczny. Dla jakich wartości x + y + z = 0 x y + k z = 0 parametru k układ ma dokładnie jedno rozwiązanie - podaj to rozwiązanie. 16. Podaj przykład wersora o niezerowych współrzędnych. 17. Napisz definicję liniowej niezależności wektorów. Wyjaśnij, czy cztery dowolne, niezerowe wektory w przestrzeni R 3 mogą być liniowowo niezależne. 18. Dane są dwa punkty: A( 1, 0, 3), B(5, 3, 0). Napisz równanie kierunkowe, parametryczne i krawędziowe prostej wyznaczonej przez te punkty. 19. Opisz jak wyznaczyć odległość pomiędzy dwiema danymi prostymi. 20. Wyznacz warunek prostopadłości dwóch płaszczyzn π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0, π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0. x = x 0 + at 21. Wyznaczyć warunek równoległości prostej l : y = y 0 + bt, t R do płaszczyzny z = z 0 + ct Ax + By + Cz + D = 0. x = x 1 + at 22. Wyznaczyć warunek, który muszą spełniać dwie nierównoległe proste l 1 : y = y 1 + bt, z = z 1 + ct x = x 2 + fs t R oraz l 2 : y = y 2 + gs, s R, aby się przecinały. z = z 2 + hs
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 3 23. Wymień i opisz trzy zastosowania całki podwójnej. 24. Zmień kolejność całkowania i oblicz 9 3 sin(πx 3 ) dxdy. 0 y 25. Opisz współrzędne biegunowe. Narysuj i zapisz za pomocą współrzędnych biegunowych obszar: a) x 2 + y 2 2x, b) x 2 + y 2 2y, c) 5 x 2 + y 2 9, y x. 26. Opisz uogólnione współrzędne biegunowe. Narysuj i zapisz za pomocą uogólnionych współrzędnych biegunowych obszar: a) 4x 2 + 9y 2 36, b) 9x 2 + y 2 4, x 0. 27. Wymień i opisz dwa zastosowania całki potrójnej. 28. Opisz wspólrzędne walcowe i współrzędne sferyczne. Zapisz za pomocą współrzędnych walcowych lub sferycznych i narysuj obszar ograniczony przez: a) x 2 + y 2 + z 2 = 2x, b) x 2 + y 2 + z 2 = 2y, c) x 2 + y 2 + z 2 = 2z, d) x = 25 y 2 z 2, x = 0, e) x = 25 y 2 z 2, x = 0, f) z = 25 x 2 y 2, z = 0, g) z = 25 x 2 y 2, z = 0, h) x 2 + y 2 = z 2, z = 5, i) x 2 + y 2 = z 2, z = 5, j) x 2 + y 2 = 2x, z = 5, z = 5, k) x 2 + y 2 = z 2, x 2 + y 2 = 1, l) z = x 2 + y 2, x 2 + y 2 = 1, z = 1. 29. Oblicz wartość oczekiwaną dla rozkładu jednostajnego. 30. Podać rozkład zmiennej losowej, która przyjmuje wartości równe sumie oczek na dwóch kostkach. Obliczyć P (5 X 8) oraz wykreślić dystrybuantę tej zmiennej.
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 4 31. Zorganizowano następującą grę - rzucamy dwiema kostkami: - jeżeli suma oczek jest równa 2, otrzymujemy 5 zł, - jeżeli suma oczek jest równa 3, otrzymujemy 1 zł, - w pozostałych przypadkach płacimy 1 zł. Podać rozkład tej zmiennej losowej. 32. Niech zmienna losowa X podlega rozkładowi Cauchy ego, czyli jej gęstość dana jest wzorem f(x) = 1 α, gdzie α > 0, a R. Oblicz dystrybuantę. π α 2 + (x a) 2 33. Rzucamy kostką do gry. Oblicz wartość oczekiwaną zmiennej losowej określającej liczbę wyrzuconych oczek na kostce. Przykładowe zadania - Zadania : 1. Zbadaj zbieżność szeregu: ( ) a) 1 + 2 +... + n 1 cos n ; b) n=1 1 + n 4 n=1 d) 2 n n=1 n ; e) n n=1 2. Rozwiąż równanie ( ) 1 + 2 +... + n 1 cos n ; c) 1 + n 3 2n + sin n cos(πn) 4n 8 + cos n ; 1 1 2 3 1 2 x 2 2 3 = 0. 2 3 1 5 2 3 1 7 x 2 cos(sin 1 n=1 n ) ; f) n! n n=1 n 2n + n. 2 1 1 1 2 3. W zbiorze liczb zespolonych rozwiąż równanie iz 3 +i 3 1 2 2 3 a = 0, gdzie a = 2 1 3 1 1 2 1 1. 4. Wyznacz, oile istnieje, macierz Xoraz jej wyznacznik: a) 2 5 X 1 2 = 1 0, 5 2 2 3 0 1 b) 2 1 2 2 1 X 1 2 2 3 T + 3 1 0 0 1 = 6 1 0 0 1,
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 5 0 3 1 2 4 1 c) X 1 0 0 =, 2 1 7 0 1 1 T 2 3 d) X + 3 1 0 2 = 1 1 0 1 1 0 5 0 5 3 5. Oblicz ( a b )( a b ), gdzie a = [1, 5, 3] i b = [ 1, 0, 4]. 6. Dany jest trójkąt o wierzchołkach A(1, 1, 3), B(0, 2, 3) i C(2, 2, 1). Oblicz wysokość opuszczoną z wierzchołka C. 7. Dany jest czworościan o wierzchołkach A(1, 1, 1), B(1, 2, 3), C(2, 3, 1) i D( 1, 3, 5). Oblicz wysokość opuszczoną z wierzchołka D. 8. Wyznacz punkt B symetryczny do punktu A(4, 3, 10) względem prostej. l : x 1 2 = y 2 4 = z 3 5. 9. Wyznacz punkt B symetryczny do punktu A(5, 2, 1) względem płaszczyzny π : 2x y + 3z + 23 = 0. 10. Sprawdź, czy przez proste l 1 : 2x + 3y z 1 = 0 x + y 3z = 0, l 2 : x + 5y + 4z 3 = 0 x + 2y + 2z 1 = 0 można poprowadzić płaszczyznę. Jeśli tak, to wyznacz jej równanie. 11. Wyznacz odległość między prostymi l 1, l 2 : x = 1 2t x + 3 a) l 1 : = y 6 2 3 = z 6 4, l 2 : y = 3t z = 2 + 4t b) l 1 : x 7 6 = y 2 9 x = 2 + 4t = z 12, l 2 : y = 6 6t z = 7 8t, t R;, t R;
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 6 c) l 1 : x = y 2 = z 2, l 2 : d) l 1 : x + 5 4 x = t y = 2, t R; z = 2t x = 4 + 2t = y 5 3 = z 5 5, l 2 : y = 4 t z = 1 2t, t R. 12. Wyzancz dziedzinę funkcji: a) f(x, y) = arcsin y 1 ; b) f(x, y) = x c) f(x, y) = y sin x ; d) f(x, y) = x sin y ; 1 x y + arcsin (x 2 + y 2 3) ; e) f(x, y) = x 2 1 + ln(4 x 2 y 2 ) ; f) f(x, y) = x y + ln (y x). 13. Sprawdź, czy funkcja u(x, y) spełnia równanie: a) u(x, y) = x y y x, u(x + y + ln u) = x u x + y u y ; b) u(x, y) = 2 cos 2 (y x 2 ), 2 2 u x 2 + 2 u x y = 0. 14. Stosując różniczkę zupełną funkcji dwóch zmiennych oblicz przybliżoną wartość wyrażenia: 3 a) (2, 06) 2 + (1, 97) 2, b) (1, 06) 2 + (1, 97) 3, c) (1, 03) 3,01, 0, 02 d) arctg 1, 99, e) ln( 1, 04 + 0, 4 96 1), f) (1, 95) 2 e 0,02. 15. Wyznacz ekstrema lokalne funkcji: a) f(x, y) = 3x 3 + 3x 2 y y 3 15x, b) f(x, y) = e x y (x 2 2y 2 ). 16. Wyznacz ekstrema globalne funkcji na podanym obszarze: a) f(x, y) = x 2 + y 2 xy + x + y na obszarze ograniczonym przez proste x = 0, y = 0, x + y + 3 = 0; b) f(x, y) = x 2 + 2xy 4x + 8y na obszarze 0 x 1, 0 y 2; c) f(x, y) = x 2 y 2 na obszarze x 2 + y 2 4. 17. Za pomocą całki podwójnej oblicz objętość bryły ograniczonej powierzchniami: a) z 2 = x 2 + y 2, z = 4, z = 8; b) x 2 + y 2 = 1, z = y + 1, z = x 2 + y 2 ; c) z = 6 x 2 y 2, z = x 2 + y 2 ; d) x = 0, y = 0, z = 0, x + 2y + 3z = 12.
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 7 V 18. Oblicz: a) dxdydz V x2 + y 2 + z, gdzie V jest obszarem 1 2 x2 + y 2 + z 2 2 dla x 0; b) z 2, gdzie V jest obszarem x 2 + y 2 + z 2 2z; V c) z 2, gdzie V jest częścią wspólną obszarów x 2 + y 2 + z 2 1 oraz x 2 + y 2 + z 2 2z; V d) x2 + y 2 + z 2 dxdydz, gdzie V jest obszarem ograniczonym dwiema powierzchniami z = 4 x 2 y 2 oraz z = x 2 + y 2 ; 19. Rozwiąż równanie różniczkowe liniowe (w przypadku, gdy jest to możliwe przy rozwiązywaniu skorzystaj z metody przewidywań): a) y + xy = x 2, b) y + y = x 2, c) y 2y = xe 2x, d) y xy = xe x2, e) y + 2y = x 2 e x + sin 2x, f) y + y = x 3 e x, g) y 3y + 2y = sin e x, h) y + 4y = 1 cos 2x, i) y + y = tgx, j) y + y = 4x 2 x + 1 e x, k) y y = 2e 2x + x 2, l) y y = 2e x + x, m) y 2y + y = ex x x e x, n) y 2y = x 2 e 2x, o) y + 4y = 3 sin 2x. 20. Rozwiąż równanie różniczkowe: a) xy + y = 2xy 2, b) y + 1 2 ( y x + 1 ) = 0, c) y + y y x = 1 x 3 y, 3 d) x 2 y y(x + y) = 0, e) y + y y 1 2 = 0, f) y + y + x 2 y 3 = 0. 21. Rzucamy dwiema symetrycznymi monetami. Za wartość zmiennej losowej przyjmujemy liczbę wyrzuconych orłów. a) Podaj rozkład prawdopodobeństwa tak określonej zmiennej losowej. b) Wyznacz dystrybuantę tej zmiennej losowej. c) Korzystając z dystrybuanty oblicz P (0 < X < 2). 22. Rzucamy dwiema symetrycznymi kostkami do gry. Każdemu z rzutów przypisujemy wartość bezwzględną różnicy liczby oczek wyrzuconych na pierwszej i drugiej kostce. Opisz za pomocą tabeli rozkład prawdopodobieństwa zmiennej losowej X odpowiadającej temu doświadczeniu. Za pomocą dystrybuanty tego rozkładu wyznacz P (1 < X < 3) i medianę. 23. Dana jest zmienna losowa o rozkładzie x i -1 1 2 5. Wyznacz C, dystrybuantę p i 0,4 0,3 0,1 C tego rozkładu oraz P (0 X 1) korzystając z tabelki rozkładu i z dystrybuanty. Oblicz wartość oczekiwaną i wariancję zmiennej losowej Y 1 = 2X 1 oraz Y 2 = X 2.
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 8 0 gdy x < 0 24. Niech dana będzie funkcja f(x) =. Wyznacz stałą A tak, aby Ae 3x gdy x 0 f(x) była gęstością prawdopodobieństwa. Wyznacz dystrybuantę tego rozkładu oraz jego medianę. Oblicz P ( 1 X 1) korzystając z gęstości i z dystrybuanty i zaznacz je na ich wykresach. 25. Niech dana będzie gęstość rozkładu zmiennej losowej X typu ciągłego wzorem x gdy x 1; f(x) = 0 gdy x > 1; Wyznacz: a) dystrybuantę oraz medianę zmiennej losowej X; b) P (0 < X < 2) korzystając z funkcji gęstości prawdopodobieństwa i z dystrybuanty, a następnie zilustruj je na ich wykresach; c) wartość oczekiwaną i wariancję zmiennej losowej Y = 4X 1. 26. Niech dana będzie gęstość rozkładu zmiennej losowej X wzorem f(x) = 0 gdy x < 1 1 gdy x 1. 2x 2 Wyznacz dystrybuantę tego rozkładu, wartość oczekiwaną i medianę. Korzystając z funkcji gęstości i dystrybuanty oblicz P ( 2 X 2), a następnie zaznacz to prawdopodobieństwo na wykresach gęstości i dystrybuanty. 27. Zmienna losowa X podlega rozkładowi o gęstości ln x gdy 1 x A f(x) = 0 gdy x < 1 lub x > A. Wyznacz A, dystrybuantę oraz P (2 X e). 28. Dla jakiej wartości A funkcja f(x) = A 1 x 2 gdy x < 1 0 gdy x 1 jest gęstością prawdopodobieństwa? Wyznacz dystrybuantę, wartość oczekiwaną i medianę tego rozkładu.