NIELINIOWE ZWIĄZKI GEOMETRYCZNE DLA POWŁOK
|
|
- Paulina Muszyńska
- 7 lat temu
- Przeglądów:
Transkrypt
1 PIĘĆDZIESIĄTA PIERWSZA KONFERENCJA NAUKOWA KOMITETU INŻYNIERII LĄ DOWEJ I WODNEJ PAN I KOMITETU NAUKI PZITB Gańs-Krynca 005 Wesła BARAN NIELINIOWE ZWIĄZKI GEOMETRYCZNE DLA POWŁOK. Wstęp W referace bęze moa o cench połoach [], [], [], a ęc tach, tórych oległośc pomęzy poerzchnam grancznym są elorotne mnesze o ymaró promen rzyzny tychże poerzchn. Ja aomo, tym przypau analzę tróymaroego stanu naprężena oształcena można przeproazć sposób przyblżony za pomocą elośc torzących pola uymaroe. Wszyste zależnośc oreślamy ten sposób, aby były one opsane zasze poprzez funce oległośc o poerzchn śrooe lub a często oreśla sę, o poerzchn postaoe. Poza tym operamy sę na założenach Krchhoffa-Love a. Istnee szereg prac otyczących ysus na sposobem sproazana zaganena tróymaroego stanu naprężena oształcena o opsu uymaroego, a persze z nch pochozą z persze połoy XIX eu. Są to prace Cauchy ego [4] Possona [5], otyczące rozłau słaoych tensora naprężena szereg potęgoe zmenne z. Zastępuąc szereg nesończone penym ch sumam częścoym, otrzymalbyśmy różne postace teor poło zależnośc o yboru sumy częścoe oraz charateru samego szeregu. Znane rozązana lteraturze proazaą różnego rozau uproszczena oszacoana. Potórzmy tu za pracą Woźnaa [], że ne może stneć uymaroa teora poło, bęąca teorą ścsłą (neprzyblżoną). Co ęce, ne est naet możly enoznaczny ybór aeś optymalne teor przyblżone. Persze ogólne próby przestaena teor nelnoe można znaleźć opero latach czterzestych XX eu pracach Synge Chena [6]. W pracy Woźnaa [] poreślono, że uże znaczene maą teore, tórych nelnoe są rónana geometryczne, natomast ząz fzyczne pozostaą lnoe. W pracach [], [], [], [7] analzoano pły nelnoośc geometryczne na pracę statyczną onstruc połooych. W nnesze pracy zostaną przestaone ząz geometryczne uzglęnaące nelnoośc szystch słaoych etora przemeszczena, czyl, tóre otrzy- mano poprzez bezpośreną analzę członó nelnoych ystępuących słaoych tensora oształcena. Dr nż., Wyzał Buoncta Poltechn Opolse 9
2 . Ops poerzchn śrooe, postaoe zależnośc Rónane etoroe cene poło ma postać R ( u, u ) = r ( u, u ) z m ( u, u ), () gze: u, u parametry rzyolnoe, z oległość arsty rónoległe o poerzchn śrooe poło, z h, h połoa grubośc poło. Rys.. Ops poerzchn śrooe rónoległe poło prze po eformac Przymuąc rónanu () z=0, otrzymamy poerzchnę śrooą S opsaną rónanem r, natomast la z>0, otrzymamy poerzchnę rónoległą, tórą oznaczymy S. Bęzemy rozpatryać peną eformacę poło (rys..), przy tóre poerzchna śrooa S przechoz S, natomast oolna arsta rónoległa o poerzchn śrooe S przeze na poerzchnę S. Wóczas rónane etoroe opsuące poerzchnę śrooą po eformac bęze mało postać r = r, () gze: est etorem przemeszczena. Do yznaczena położena poło po eformac bęze oneczne yznaczene rozłau etora przemeszczena oraz (rys. ) baze oarantne: r, m []. Zastosuemy znane zory: = r m, = r m. () Wtey pochone cząstoe etoró oraz, po yorzystanu zoró Gaussa Wengartena oraz po uporząoanu proazenu pochone ontraarantne przymą postać: = b r b, (4.) ( ) ( ) m ( b ) r ( b ) m =. (4.), 0
3 . Ops tensora oształcena Można przyąć za pracą Belaa [] tensory oształcena: błonoego γ = ( g g ), błonoo-zgęcoego ρ = ( b b ), (5) zgęcoego ϑ = ( c c ), gze spółczynn tensoró metrycznych la poerzchn po eformac () oreślamy z zależnośc: g = r r, b = r m, c = m m. (6) Słaoe tensoró oształcena (5), po yorzystanu zależnośc (6), rozpsanu oraz po przeształcenach, otrzymano postac roznęca uzglęnaącego człony nelnoe: γ = r r, ( r m ) ρ =, (7) ϑ = m m. Oznaczaąc przez nareślene stan lnoy, zależnośc (7) zapszemy postac: γ = γ, ρ = ρ, (8) ϑ = ϑ. W celu przestaena lnoych słanó słaoych tensoró oształceń (7), (8), zapsanych ta sposób, aby ystępoały nch yłączne opsy słaoych etora przemeszczena, oonamy przeształceń ers lnoe zależnośc (7), yorzystuąc yrażena opsuące pochone cząstoe etoró: (4.) oraz (4.). Doonuąc stosonych przeształceń, otrzymue sę znaną lteraturze ersę uproszczoną zązó geometrycznych, uzglęnaącą tylo człony lnoe: γ = g g b, = b b c ρ, (9) = c c b ϑ b.
4 .. Człony nelnoe tensora oształcena W celu oreślena nelnoych zązó geometrycznych, przeanalzuemy nelnoe słan słaoych tensoró oształceń (8). Oblczene : torząc loczyn salarny z yrażeń (4.) otrzymamy = l l ( b )( b ) g ( b, )( b, ) a pomaąc elośc małe uzglęnaąc opse γ ze stanu lnoego uzysamy l l l, Oblczene : = γ. (0.) γ,, loczyn salarny utorzony z yrażeń (4.), (4.) ynese l l l ( b )( b ) g ( b, )( b, ) =. l Postaaąc za, ersę uproszczoną [] l ( b ) g l =, = 0, l proazaąc opoene uproszczena przy prześcu na ersę uśrenoną zastosoaną pracach Belaa, np. [], poążemy oba loczyny zależnoścą, l = ε. (0.) l Oblczene : yorzystamy teraz o utorzena loczynu salarnego yrażene (4.) ( )( ) ( )( ), = l l l b b gl b, bl, a uzglęnaąc poprzene rozażana poązana z rzyznam [], ostateczne bęze ( ε ε ) = ε ε. = (0.) ε Po postaenu o (8) yznaczonych opoench loczynó salarnych, otrzymamy: ( δ ) γ ( δ ),, γ = γ, ρ = εγ ( δ ), ϑ = ερ ε ( δ ), () gze δ to elta Cronecera.
5 Wersę uproszczoną tensoró oształcena uęcu nelnoym zapszemy: γ = γ,,, ρ = εγ, ϑ = ερ. () W yrażenu ϑ zązó () pomnęto człon zaeraący ε, ao elość małą. Uzysane yn ( ) pełn poryaą sę z ersą uproszczoną nelnoych zązó geometrycznych poanych np. pracach: Belaa [] Woźnaa []. Należy poreślć, że uzysane ząz geometryczne otrzymano prosty sposób nżyners. Można sterzć, że ta zapsane yrażena () obemuą szyste teore, bo uzglęnaą nelnoośc szystch słaoych etora przemeszczena, czyl. Wproazone tych rozażanach uproszczena są czysto matematyczne. Dopero przyęta ersa uproszczona () proaza peen zares ogranczonośc yróżnaący przemeszczene. Ja poazano pracy [], można rozązane nelnoe poązać z rozązanem l- noym rónanem aratoym α o ( ) = 0, () o g ze: słaoa przemeszczena oblczana g teor lnoe, słaoa prze- meszczena oblczana g teor nelnoe, α spółczynn oblczony g zależnośc tórym: ξω α = (4) ( ), ξ ξ spółczynn ążący cechy materałoe z geometrą poło zależnoścą: ε n ξ =, n =,,, = H H K, ω ν ω = (5) h 4 ( ) ε, gze: H, K rzyzny: śrena Gaussa, ν spółczynn Possona, h połoa grubośc poło. 4. Przyła lczboy P ośró nelnoośc słaoych przemeszczeń etora przemeszczena, przy oblczanu poło rozpatryanych nnesze pracy, yróżna sę słaoą.. Dla uzysanego rozązana, przeproazono przyłaoe oblczena. rozzał Na przyłaze poło ysoego omna o różnych ształtach (alec, hperboloa enopołooa), la tórego obcążene antysymetryczne płya szczególne neorzystne na otrzymyane artośc sł enętrznych przemeszczeń [7], poazano różnce onesenu o słaoe przemeszczena, oblczone przy uzglęnenu lnoe nelnoe teor se nse geometrycznym. Obcążene tae ystępue np. la płyu cężaru łasnego przy ychylenu onstruc o erunu gratac. Przyrost słaoe
6 polczone z uzglęnenem nelnoośc geometryczne można oneść poobnym stosunu o sł enętrznych, szczególne momentó przerooych sł poprzecznych. Na rysunu. przestaono yresy słaoe, natomast tablcy. zestaono yn oblczeń ybranych elośc. Przeanalzoano róneż zależnośc, przyęte oczyśce sposób umony, tóre oreślaą ey może być zasane stosoane analzy statyczne uzglęnaące pły nelnoośc geometryczne na uzysane rozązana ozn. / tablcy. Przyęto za pracą [] zależność oreślaącą strefy, gze pły nelnoośc może być stotny h 0ξ o ( ) ( ). ν ξ ν h (6) Wtey umoną grancę stosoalnośc teor geometryczne lnoe opsue nespełnona lea strona nerónośc (6). W pracy [] granca ta została oreślona ao funca tylo grubośc ścan, natomast zależność (6) poza różnym cecham geometrycznym, uzglęna róneż parametry fzyczne materału z aego została yonana połoa. Znaczene parametró przyętych przyłaze: L ysoość poło, a promeń przeężenu, a o promeń postay, h grubość poło, E, ν parametry fzyczne materału, φ ąt ychylena,, ( słaoa fzyczna polczona g teor lnoe lub nelnoe geometryczne. W oblczenach przyęto ane: L=50 [m], h=0.5 [m], ν =0.667, E=7.0 [Mpa], φ= [ ], oraz la alca: a=a o =4.8 [m], a la hperboloy enopołooe: a=4.0 [m], a o = 5.6 [m]. ( n ) Tablca. S łaoe: ( la: u = 90 [ ], ϕ = [ ], = 00 [%] z ( Walec Hperboloa enopołooa / / ( [ m] [cm] [cm] [%] [-] [cm] [cm] [%] [-]
7 Rys.. Wartośc słaoe oraz ( n ) la omna ształce: a) alca, b) hperboloy enopołooe. Wyresy la połunó gze ystępuą estremalne artośc 5. Posumoane Przeproazono oblczena poło o różnych ształtach poerzchn śrooe yma- zenętrznych, uzglęnaąc człony lnoe nelnoe. Peen ybrany zares rach otrzymanych ynó przestaono przyłaach lczboych (rozzał 4). Na postae aoścoe loścoe analzy ynó można sterzć, że: naęsze różnce oblczanych elośc g obyu przyblżonych teor otrzymue sę la obcążena antysymetrycznego, ształt poło relaca ymaró: promeń ługość poło oraz nne parametry, maą stotny pły na elość przyro stu otrzymanego la przemeszczeń:, ( 5
8 la poło rępe, np. płaszcz chłon omnoe, przy uzglęnenu rozpatryanego nnesze pracy obcążena, pły nelnoośc na uzysane rozązane est neel ze zglęu na małe elośc przemeszczeń może być pomnęty, la poło smułe, np. yso omn, uż przy małym uzale obcążena antysymetrycznego pły nelnoośc na uzysane rozązane est zauażalny przy ęszych przemeszczenach ponen być uzglęnony oblczenach, przeproazaąc analzę uzysanych ynó można sterzć, że ryterum stosoalnośc teor geometryczne nelnoe, uzglęnaące zaróno cechy geometryczne, a łaścośc materału z aego została yonana połoa, est spełnone la elośc przemeszczena ęsze o.5% o przemeszczena, co poterzaą yn ( zameszczone tablcy. Na postae otrzymanych ynó oraz nnych prac [], [], [ ], [7] można sterzć, że należy ążyć o możle operatynego formułoana założeń rónań teor z puntu - ogólne analzy, a alszych ch zena zastosoań. Lteratura [] BIELAK S., Nelnoa teora poło, cz. II, Wyższa Szoła Inżynersa Opolu, Stua Monografe, zeszyt 8, Opole 995. [] WOŹNIAK Cz., Nelnoa teora poło, PWN, Warszaa 966. [] KONDERLA P., Statya poło o ształce hperboloy enopołooe przy uzglęnenu nelnoośc geometryczne, Praca otorsa, Pol. Wr., Wrocła 97. [4] CAUCHY A., Sur l equlbre et le mouvement une plaque sole, Exerccle e mathématque,, 98. [5] POISSON S., Mémor sur l equlbre et le mouvement es corps soles, Pars, Mem. e l Aca. Sc., 8 (99). [6] SYNGE I. W., CHIEN W. Z., The ntrst theory of elastc shells an plates, Th. v. Karman Annv. Volume, 94, s.0-0. [7] BARAN W., Analza statyczna poło hperboloalne. Uęce nelnoośc geometryczne, Praca otorsa, Poltechna Opolsa, Opole 998. NON-LINEAR GEOMETRICAL RELATIONS FOR SHELLS Summary Problems of statcal structural analyss of shells s scusse n the paper. Geometrcal rela- consere. Non-lnear escrpton of relatons components are propose. Obtane tons are general form of relatons mae t possble to tae nto account the non-lnearty of all components of vector escrbng the shell splacements. The ntrouce smplfe verson of splacement escrpton contans only one non-lnear component the one pertanng to component of splacement vector. Its form s compatble th usually utlze form of relatons. Fnally, calculatonal examples are gven that mae t possble to obtan results for shells of numerous shapes. 6
MECHANIKA BUDOWLI 13
1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym
e mail: i metodami analitycznymi.
Budownctwo Archtektura () (04) 4-5 w Eurokodu przy kon owych e mal: w.baran@po.opole.pl Streszczene: W pracy opsano rodzaje analz oblczenowych przy projektowanu ch dla dowolneo sposobu znych na metodam
Pattern Classification
Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton nd ed by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher
WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO
Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono
KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk
Metoda Różnic Skończonych
Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.
1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA
J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys.
Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Nadokreślony Układ Równań
Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).
Małe drgania wokół położenia równowagi.
ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
DRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODELOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURAL ANALYSIS
Budoncto 18 Krzysztof Kubc DRGANIA WŁASNE UKŁADÓW RAMOWYCH I ICH MODEOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURA ANAYSIS Wproadzene Progray do oblczeń onstrucj ułatają życe projetanto, znaczne sracając
ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENTOWEJ TERMOMECHANIKI
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZY 5/205 Komsa Inżyner Buowlane Ozał Polske Akaem Nauk w Katowcach ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENOWEJ EROECHANIKI Jan KUBIK Wyzał Buownctwa Archtektury, Poltechnka
Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
ROZWIĄZANIE POWŁOKI HIPERBOLOIDALNEJ W PARAMETRYZACJI PROSTOKREŚLNEJ
Wesław BARA Bronsław JĘDRASZAK ROZWIĄZAIE POWŁOKI HIPERBOLOIDALEJ W PARAMETRYZACJI PROSTOKREŚLEJ. Wstęp Budowle nżynerske występujące w budownctwe przemysłowym moą być projektowane w kształce hperbolody
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM
Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa
MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI
Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa
. Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa
Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady
Plan yładu Wyład 7: Sec samoorganzuące sę na zasadze spółzaodncta Sec samoorganzuace sę na zasadze spółzaodncta: uczene nenadzoroane uczene onurencyne reguła WTA reguła WTM antoane etoroe mapa cech Kohonena
α i = n i /n β i = V i /V α i = β i γ i = m i /m
Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena
Temat: Operacje elementarne na wierszach macierzy
Temat: Operacje elementarne na erszach macerzy Anna Rajfura Anna Rajfura Operacje elementarne na erszach macerzy n j m n A Typy operacj elementarnych. Zamana mejscam erszy oraz j, ozn.: j. Mnożene ersza
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1
.. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Współczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
Poszukiwanie optymalnego wyrównania harmonogramu zatrudnienia metodą analityczną
Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wieskiego, Warszawa, ul. Nowoursynowska 159 e-mail: mieczyslaw_polonski@sggw.pl Poszukiwanie optymalnego wyrównania
ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY
ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY 11 10 9 8 7 6 5 4 1 1 WĘZŁY: Nr: X [m]: Y [m]: Nr: X [m]: Y [m]: 1,7 1,41 7 1,6,17,968 1,591 8 1,07,46,658 1,759 9 0,688,54 4,4 1,916 10 0,46,609 5,00,061
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k
ZYKŁAD: Wyznaczyć siłę rytyczną dla pręta ociążonego diema siłami, ja na rysunu. (c) A K c B, a m,. ónania rónoagi A c c / () Y () X H ( c ) (3). ónanie ugięć przedziale BK ( ) (4) ( ) () (6) (7) E I -
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO
I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,
Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB
Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x
Nelnowe zaane optymalzacj bez ogranczeń numeryczne metoy teracyjne optymalzacj mn n x R ) = f x Algorytmy poszuwana mnmum loalnego la: f zaana programowana nelnowego bez ogranczeń zaana programowana nelnowego
Wstępne przyjęcie wymiarów i głębokości posadowienia
MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
MRS I MES W ANALIZIE BELEK O ZMIENNYM PRZEKROJU
Zeszyty Naukoe WInf Vol 6, Nr, 007 Paulna Obara, Waldemar zanec Katedra Mecank Budol Poltecnka Śętokrzyska MR I ME W ANALIZIE BELEK O ZMIENNYM PRZEKROJU treszczene W pracy rozażanom został poddany pręt,
=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2
Przyła Ułożyć równane ruchu u u,t la czwórna eletrycznego ysypatywnego o sygnale wejścowym wymuszenu G u sygnale wyjścowym opowez u. Zmenna uogólnona Współrzęna uogólnona Pręość uogólnona q Energa netyczna
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
Wyrównanie spostrzeżeń pośrednich. Spostrzeżenia jednakowo dokładne
Wyrónane spostrzeżeń pośrednch Szukay : X, Y, Z, T (elkośc pradze) Merzyy L, L, L,L n (spostrzeżena erzone bezpośredno pośrednczą yznaczenu x, y, z, t ) Spostrzeżena jednakoo dokładne Wyrónane polega na:
TERMODYNAMIKA PROCESOWA I TECHNICZNA
TERMODYNAMIKA PROCESOWA I TECHNICZNA Wyład VII Roztory Defncje onencje Welośc meszana Roztory dealne Welośc cząstoe Rónana stanu dla roztoró Rónoaga fazoa Praa Raoulta Henry ego Prof. Anton Kozoł, Wydzał
ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza
FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji
Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy
Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady
Plan yładu Wyład 10: Sec samoorganzuce s na zasadze spółzaodncta Sec samoorganzuace s na zasadze spółzaodncta: uczene nenadzoroane uczene onurencyne reguła WTA reguła WTM antoane etoroe mapa cech Kohonena
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
III. KINEMATYKA OŚRODKA ODKSZTAŁCALNEGO
onerl P Mechn ośroów cąłych III INEMATYA OŚRODA ODSZTAŁALNEO Ops rch cł oszłclneo Obe fzyczny es cłem w rozmen MO eżel zme przesrzeń opoloczną w óre ży pn m swoe ooczene z oreśloną meryą orz obe en e sę
Zastosowanie procedur modelowania ekonometrycznego w procesach programowania i oceny efektywności inwestycji w elektroenergetyce
Waldemar KAMRAT Poltechna Gdańsa Katedra Eletroenergety Zastosowane procedur modelowana eonometrycznego w procesach programowana oceny efetywnośc nwestyc w eletroenergetyce Streszczene. W pracy przedstawono
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:
Skręcanie prętów projektowanie 5
Skręcane pręó projekoane 5 Spoó rozązyana pręó kręcanych zoał omóony rozdzae. Zadana projekoe proadzają ę do okreśena ymaró przekroju poprzecznego pręa na podae arunku nośnośc /u arunku użykoana. przypadku
STATYSTYKA. Zmienna losowa skokowa i jej rozkład
STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
Wykład 2: Stan naprężeń i odkształceń
Wykład : Stan naprężeń odkształceń Leszek CHODOR, dr nż. bud, nż.arch. leszek@chodor.pl ; leszek.chodor@polske-nwestycje.pl Lteratura: [] Tmoschenko S. Gooder A.J.N., Theory of Elastcty Mc Graw Hll, nd,
1. Wstępna geometria skrzyżowania (wariant 1a)
. Wtępna geometra rzyżowana (warant a) 2. Strutura erunowa ruchu 3. Warun geometryczne Srzyżowane et zloalzowane w śródmeścu o newelm ruchu pezych. Pochylene podłużne na wlotach nr 3 ne przeracza 0,5%,
10. REZONANS W OBWODACH ELEKTRYCZNYCH
0. EZONANS W OBWODAH EEKTYZNYH W obwoach prąu sinusoialnego przebiegi czasowe (prąów, napięć, sem, spm, mocy) cylicznie przybieraą na przemian wartości oatnie i uemne. Przebiegi o taim charaterze noszą
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI
Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował
x k3 y k3 x k1 y k1 x 2
A. RANFORMACJA RZEMEZCZEŃ obrębie bryły ztynej Andrzej Wite odtay ontrcji mazyn y x - - y x - C x - O x x - x y - - Ry.. chemat tranformacji przemiezczeń Znany jet mały rch bryły ztynej (ry.) pncie O opiany
Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju
Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton
WYKŁAD 2: CAŁKI POTRÓJNE
WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
1. Komfort cieplny pomieszczeń
1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych
Zasada superpozycji.
Zasada sperpozycj. e e e n rotnk skpony bezźródłoy m j m m j m n j n k ymszena atonomczne, fnkcje kładoe ( obodoe ) Zasada sperpozycj: W obodze SL doolna fnkcja kładoa (prąd lb napęce ) jest smą algebraczną
UCHWAŁA NR 279/XVIII/2011 Rady Miasta Płocka z dnia 29 grudnia 2011 roku
UCHWAŁA NR 279/XVIII/2011 Rady Masta Płocka z dna 29 grudna 2011 roku sprae ustalena Regulamnu przyznaana przekazyana stypendó mejskch dla ucznó szkół proadzonych lub dotoanych przez Masto Płock zameldoanych
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Efekty zaokrągleń cen w Polsce po wprowadzeniu euro do obiegu gotówkowego
Ban Kredyt 40 (2), 2009, 61 95 www.banredyt.nbp.pl www.banandcredt.nbp.pl fety zaorągleń cen w Polsce po wprowadzenu euro do obegu gotówowego Mare Rozrut*, Jarosław T. Jaub #, Karolna Konopcza Nadesłany:
Karta (sylabus) modułu/przedmiotu
Karta (sylabus) modułu/przedmotu Budoncto (Naza kerunku studó) Studa I Stopna Przedmot: Budoncto przemysłoe Industral buldng engneerng Rok: III Semestr: 6 MK_4 Rodzaje zajęć lczba godzn: Studa stacjonarne
Monitorowanie i Diagnostyka w Systemach Sterowania
Montoroane Dagnostka Sstemach Steroana Katedra Inżner Sstemó Steroana Dr nż. Mchał Grochosk Montoroane Dagnostka Sstemach Steroana na studach II stopna specjalnośc: Sstem Steroana Podejmoana Deczj Maszn
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine
Analityczne metody kinematyki mechanizmów
J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier
8. MOC W OBWODZIE PRĄDU SINUSOIDALNEGO
OBWODY I SYGNAŁY 8. MOC W OBWODZIE PRĄD SINSOIDALNEGO 8.. MOC CHWILOWA Jeśl na zacskach dójnka SLS ystępje napęcoe ymszene harmonczne, to prąd zmena sę róneż snsodalne z tą samą plsacją Nech () t m sn
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],
STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:
MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE
Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra
Metoda Rónic Skoczonych
Metoda Rónc Skoczonych Cz Belka na sprystym podłou Komendy Matlaba UWAGA! Aby przeproadz praktyczne czena z ykorzystanem polece Matlaba, naley nada artoc lczboe szystkm parametrom ystpujcym komendach,
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
Budowa ścieżki spacerowo-dydaktycznej wokół jezior w Januszkowicach
Biuro Projektowe ECO-UNIT mgr inż. Marek Klyk ul. Cygana 4/213, 45-131 Opole tel. 77 442-81-18 fax. 77 442-81-19 kom. 606 101 958 NIP 754-242-14-40 REGON 532303190 http: www.eco-unit.pl e-mail: m.klyk@eco-unit.pl
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=