WYKŁAD 2: CAŁKI POTRÓJNE
|
|
- Janina Krupa
- 8 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu na prostopadłościany, 1 n, przy czym prostopadłościany podziału całowicie wypełniają prostopadłościan i mają parami rozłączne wnętrza; x, y, z wymiary prostopadłościanu, 1 n; d = ( x ) + ( y ) + ( z ) - długość przeątnej prostopadłościanu, 1 n; δ() = max{d : 1 n } średnica podziału ; Ξ = {( x 1, y1, z1 ),( x, y, z),,( xn, yn, zn) gdzie ( x, y, z ), 1 n ziór puntów pośrednich podziału Rys 1 odział prostopadłościanu = [a,] [c,d] [p,q] Def 11 (cała potrójna po prostopadłościanie) Niech funcja f ędzie ograniczona na prostopadłościanie Całę podwójną z funcji f po prostopadłościanie definiujemy wzorem: def f ( dxdydz = lim δ ( ) 0 = n 1 f ( x, y, Z )( x )( y )( z o ile granica po prawej stronie znau równości istnieje oraz nie zależy od sposoów podziału prostopadłościanu, ani od sposoów wyoru puntów pośrednich Ξ Mówimy wted że funcja f jest całowalna na prostopadłościanie Uwaga Całę potrójną z funcji f po prostopadłościanie oznaczamy też symolem f ( d Fat 1 (o całowaniu funcji ciągłej) Funcja ciągła na prostopadłościanie jest na nim całowalna Tw 13 (o liniowości całi) Jeżeli funcje f i g są całowalne na prostopadłościanie oraz c R, to: a) funcja f + g jest całowalna na prostopadłościanie oraz ),
2 ( f + ) dxdydz= f ( dxdydz+ ( dxdydz ; ) funcja cf jest całowalna na prostopadłościanie oraz cf ( dxdydz c f ( dxdydz = Tw 14 (o addytywności względem oszaru całowania) Jeżeli funcja f jest całowalna na prostopadłościanie, to dla dowolnego podziału prostopadłościanu na dwa prostopadłościany 1, o rozłącznych wnętrzach, funcja f jest całowalna 1 i na oraz f ( d= f ( d f ( d + 1 Tw 15 (o zamianie całi potrójnej na całę iterowaną) Jeżeli funcja f jest ciągła na prostopadłościanie = {(: a x, c y d, p z q to d q f ( dxdydz = f ( dz dy dx a c p Uwaga owyższe twierdzenie ędzie prawdziwe taże wted gdy po prawej stronie równości napiszemy dowolną inną całę iterowaną (jest sześć rodzajów całe iterowanych) Całę iterowaną d q f ( dz dy dx a c p zapisujemy umownie w postaci a d c q dx dy f ( dz p odoną umowę przyjmujemy dla pozostałych całe iterowanych W wielu przypadach wyór odpowiedniej olejności całowania pozwala znacznie uprościć oliczenia całi potrójnej Fat 16 (cała z funcji o rozdzielonych zmiennych) Jeżeli 1 funcja f jest ciągła na przedziale [a,], funcja g jest ciągła na przedziale [c,d], 3 funcja h jest ciągła na przedziale [p,q], to d q f ( x) h( dxdydz = f ( x) dx dy h( dz, a c p gdzie = [a,] [c,d] [p,q] CAŁKI OTRÓJNE O OBSZARACH NORMALNYCH
3 Def 1 (cała potrójna po oszarze) Niech funcja f ędzie funcją ograniczoną na oszarze ograniczonym R 3 oraz niech ędzie dowolnym prostopadłościanem zawierającym oszar onadto niech f * oznacza rozszerzenie funcji f na R 3 oreślone wzorem: f ( dla ( f ( = 3 0 dla ( R \ Całę potrójną funcji f po oszarze definiujemy wzorem: def f dxdydz= f ( ( dxdydz, o ile cała po prawej stronie znau równości istnieje Mówimy wted że funcja f jest całowalna na oszarze Uwaga Cała f ( dxdydz nie zależy od wyoru prostopadłościanu Def (oszary normalne względem płaszczyzn uładu) a) Oszarem normalnym względem osi xoy nazywamy ziór = {( :( U, z gdzie U jest oszarem regularnym na płaszczyźnie xo a funcje D i G są ciągłe na U, przy czym < dla puntów ( należących do wnętrza oszaru U ) Oszarem normalnym względem osi xoz nazywamy ziór = {( :( U, y gdzie U jest oszarem regularnym na płaszczyźnie xoz, a funcje D i G są ciągłe na U, przy czym < dla puntów ( należących do wnętrza oszaru U c) Oszarem normalnym względem osi yoz nazywamy ziór = {( :( U, x gdzie U jest oszarem regularnym na płaszczyźnie yoz, a funcje D i G są ciągłe na U, przy czym < dla puntów ( należących do wnętrza oszaru U Rys 1 Oszar normalny względem płaszczyzny xoy Rys Oszar normalny względem łaszczyzny xoz Rys 3 Oszar normalny względem płaszczyzny yoz Tw 3 (całi iterowane po oszarach normalnych) Jeżeli funcja f jest ciągła na oszarze = {( :( U, z } normalnym względem płaszczyzny xo gdzie D i G są ciągłe na oszarze regularnym U, to
4 f ( dxdydz = f ( dz dxdy U Jeżeli funcja f jest ciągła na oszarze = {( : a x, d ( x) y x), z } normalnym względem płaszczyzny xo gdzie funcje d i g są ciągłe na odcinu [a,], a funcje D i G są ciągłe ( : a x, d( x) y x), to na oszarze { } g ( x) f ( dxdydz = f ( dz dy dx a d ( x) Uwaga Całę po prawej stronie powyższej równości ędziemy zapisywali umownie w postaci: a g ( x) d ( x) dx dy f ( dz rawdziwe są taże analogiczne wzory z całami iterowanymi po oszarach normalnych względem pozostałych płaszczyzn uładu Def 4 (oszar regularny w przestrzeni) Sumę sończonej liczy oszarów normalnych względem płaszczyzn uładu o parami rozłącznych wnętrzach nazywamy oszarem regularnym w przestrzeni Fat 5 (cała po oszarze regularnym w przestrzeni) Niech oszar regularny ędzie sumą oszarów normalnych 1,,, n o parami rozłącznych wnętrzach oraz niech funcja f ędzie całowalna na oszarze Wtedy f ( d= f ( d+ f ( d+ f ( d + 1 Uwaga Całi po oszarach regularnych mają te same własności co całi po prostopadłościanach (liniowość, addytywność względem oszaru całowania) Def 6 (cała potrójna z funcji wetorowej) Niech funcje, Q, R ędą całowalne na oszarze regularnym R 3 Całę z funcji wetorowej F= (, Q, R) po oszarze oreślamy wzorem: def F ( d = ( d, Q( d, R( d v Def 7 (wartość średnia funcji na oszarze) Wartością średnią funcji f na oszarze nazywamy liczę: def 1 f śr= f ( dxdydz, gdzie oznacza pole oszaru Tw 8 (o wartości średniej dla całe potrójnych) Jeżeli funcja f jest ciągła na oszarze normalnym, to = f x, y, z ) v f śr ( x0, y0, z0 ) ( ZAMIANA ZMIENNYCH W CAŁKACH OTRÓJNYCH Def 31 (współrzędne walcowe) ołożenie puntu w przestrzeni można opisać tróją licz (ϕ,ρ,h), gdzie: n
5 ϕ oznacza miarę ąta między rzutem promienia wodzącego puntu na płaszczyznę xo a dodatnią częścią osi O 0 ϕ< π alo π < ϕ π ; ρ oznacza odległość puntu od początu uładu współrzędnych, 0 ρ <, h oznacza odległość (dodatnią lu ujemną) puntu od płaszczyzny xo < h < Rys 31 Współrzędne walcowe puntu w przestrzeni Fat 3 (zamiana współrzędnych walcowych na artezjańsie) Współrzędne artezjańsie ( puntu przestrzeni danego we współrzędnych walcowych (ϕ,ρ,h) oreślone są wzorami: x = ρ cosϕ W : y = ρ sinϕ z = h Rys 3 Zamiana współrzędnych walcowych na artezjańsie Tw 33 (współrzędne walcowe w całce potrójnej) Niech 1 Oszar U ędzie oreślony we współrzędnych walcowych wzorem {( ϕ, ρ, h) : α ϕ β, d( ρ, ϕ, ρ) h ϕ, ρ) gdzie funcje d i g są ciągłe na przedziale [α,β[ [0,π], a funcje D i G są ciągłe ma oszarze {( ϕ, ρ) : α ϕ β, d( ρ funcja f ędzie ciągła na oszarze, tóry jest orazem oszaru U przy przeształceniu walcowym, = W(U) Wtedy
6 f ( dxdydz = U f ( ρ cosϕ, ρ sinϕ, h) ρdhdρdϕ = β α g ( ϕ ) d ( ϕ ) ϕ, ρ ϕ, ρ Uwaga Całę iterowaną z powyższego twierdzenia zapisujemy umownie w postaci: β α g ( ϕ ) d ( ϕ ) ϕ, ρ ) d ϕ dρ f ( ρ cosϕ, ρ sinϕ, h) ρdh ϕ, ρ ) ) f ( ρ cosϕ, ρ sinϕ, h) ρdh dρ dϕ ) Współrzędne walcowe stosujemy głównie wted gdy oszar całowania jest ograniczony fragmentami powierzchni walców, sfer, stożów lu płaszczyzn Def 34 (współrzędne sferyczne) ołożenie puntu w przestrzeni można opisać tróją licz (ϕ,ψ,ρ), gdzie ϕ oznacza miarę ąta między rzutem promienia wodzącego puntu na płaszczyznę xo a dodatnią częścią osi O 0 ϕ< π alo π < ϕ π ; ψ oznacza miarę ąta między promieniem wodzącym puntu, a płaszczyzną xo π π ψ, ρ oznacza odległość puntu od początu uładu współrzędnych, 0 ρ < Uwaga We współrzędnych geograficznych na Ziemi liczy ϕ, ψ są odpowiednio długością i szeroością geograficzną Rys 33 Współrzędne sferyczne puntu w przestrzeni Fat 35 (zamiana współrzędnych sferycznych na artezjańsie) Współrzędne artezjańsie puntu ( w przestrzeni danego we współrzędnych sferycznych (ϕ,ψ,ρ) oreślone są wzorami: x = ρ cosϕ S : y = ρ sinϕ z = ρ sinψ
7 Rys 34 Zamiana współrzędnych sferycznych na artezjańsie Tw 36 (współrzędne sferyczne w całce potrójnej) Niech 1 Oszar U ędzie oreślony we współrzędnych sferycznych wzorem {( ϕ, ψ, ρ) : α ϕ β, d( ψ, ϕ, ψ ) ρ ϕ, ψ ) gdzie funcje d i g są ciągłe na przedziale [α,β[ [0,π], a funcje D i G są ciągłe ma oszarze {( ϕ, ψ ) : α ϕ β, d( ψ funcja f ędzie ciągła na oszarze, tóry jest orazem oszaru U przy przeształceniu sferycznym, = S(U) Wtedy f ( dxdydz = U f ( ρ cosϕ, ρ sinϕ, ρ sinψ ) ρ = β α g ( ϕ ) d ( ϕ ) ϕ, ψ ) ϕ, ψ ) dρdψdϕ = f ( ρ cosϕ, ρ sinϕ, ρ sinψ ) ρ Uwaga Całę iterowaną z powyższego twierdzenia zapisujemy umownie w postaci: ϕ, ψ ) β g ( ϕ ) ϕ, ψ ) d ϕ dψ f ( ρ cosϕ, ρ sinϕ, ρ sinψ ) ρ dρ α d ( ϕ ) dρ dψ dϕ Współrzędne sferyczne stosujemy głównie do opisu oszarów całowania, tóre są ograniczone fragmentami powierzchni sfer, stożów lu płaszczyzn 4 ZASTOSOWANIA CAŁEK OTRÓJNYCH Fat 41 (zastosowania w geometrii) Ojętość oszaru R 3 wyraża się wzorem: dxdydz = Fat 4 (zastosowania w fizyce) 1 Masa oszaru R 3 o gęstości ojętościowej masy γ wyraża się wzorem: M γ ( dxdydz = Momenty statyczne względem płaszczyzn uładu współrzędnych oszaru R 3 o gęstości ojętościowej masy γ wyrażają się wzorami:
8 MS zγ ( dzdydz xy xz = MS yγ ( dzdydz yz = MS xγ ( dzdydz = 3 Współrzędne środa masy oszaru R 3 o gęstości ojętościowej masy γ wyrażają się wzorami: MS yz MS MS xz xy xc =, yc=, zc= M M M 4 Momenty ezwładności względem osi uładu współrzędnych oszaru R 3 o gęstości ojętościowej masy γ wyrażają się wzorami: I = y + z γ ( dxdydz, X Y ( ) = ( x + z ) I γ ( dxdydz, Z = ( x + y ) I γ ( dxdydz Moment ezwładności względem początu uładu współrzędnych oszaru R 3 o gęstości ojętościowej masy γ wyraża się wzorem: I 0= ( x + y z ) γ ( dxdydz + 6 Siła przyciągania grawitacyjnego masy m supionej w puncie r 0 przez oszar R 3 o gęstości ojętościowej masy γ wyraża się wzorem: ( r0 r ) γ ( r ) F = Gm d, 3 r r0 gdzie r= (, a G oznacza stałą grawitacji 7 Natężenie pola eletrycznego induowane w puncie r 0 przez ładune eletryczny rozłożony z gęstością ojętościową ładunu γ na oszarze R 3, wyraża się wzorem: 1 ( r0 r ) γ ( r ) E = d 3 4, πε 0 r r0 gdzie r= (, a ε 0 oznacza przenialność eletryczną próżni 8 Energia potencjalna względem płaszczyzny xoy oszaru R 3 o gęstości ojętościowej masy γ wyraża się wzorem: E p = g zγ ( dxdydz, gdzie g oznacza przyspieszenie ziemsie Załadamy tutaj, że pole grawitacyjne jest jednorodne 9 Energia inetyczna oszaru R 3 o gęstości ojętościowej masy γ, oracającego się z prędością ątową ω woół osi Oz, wyraża się wzorem: ω E = ( x + y ) γ ( dxdydz
9 Uwaga Wzór na siłę przyciągania eletrycznego oraz natężenie pola grawitacyjnego są podone do podanych wyżej Fat 43 (środi masy rył symetrycznych) 1 Jeżeli ryła w przestrzeni ma płaszczyznę symetrii i gęstość ojętościowa masy jest funcją symetryczną względem tej płaszczyzny (np jest stała), to środe masy ryły leży na tej płaszczyźnie Jeżeli ryła w przestrzeni ma oś symetrii i gęstość ojętościowa masy jest funcją symetryczną względem tej osi (np jest stała), to środe masy ryły leży na tej osi 3 Jeżeli ryła w przestrzeni ma środe symetrii i gęstość ojętościowa masy jest funcją symetryczną względem tego środa (np jest stała), to środe masy ryły porywa się ze środiem symetrii
ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza
FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru
Bardziej szczegółowoRachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Bardziej szczegółowoWykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
Bardziej szczegółowoWykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Bardziej szczegółowoCałka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Bardziej szczegółowoCałki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Całki podwójne Całki podwójne po prostokacie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Zastosowania całek podwójnych. Małgorzata Wyrwas Katedra Matematyki Wydział
Bardziej szczegółowoCałki potrójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Całki potrójne Całki potrójne po prostopadłościanie. Całki potrójne po obszarach normalnych. Zamiana zmiennych w całkach potrójnych. Zastosowania całek potrójnych. Małgorzata Wyrwas Katedra Matematyki
Bardziej szczegółowoMatematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana
Matematyka 2 Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;
Bardziej szczegółowoGeometria analityczna przestrzeni
ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych
Bardziej szczegółowoy(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji
Bardziej szczegółowoCałki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
Bardziej szczegółowoCałki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Bardziej szczegółowoAnaliza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Bardziej szczegółowoOkreślenie całki oznaczonej na półprostej
Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem
Bardziej szczegółowoANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
Bardziej szczegółowoCałki krzywoliniowe skierowane
Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Bardziej szczegółowoFunkcje dwóch i trzech zmiennych
Funkcje dwóch i trzech zmiennych Niech R 2 = {(x, y) : x, y R} oznacza płaszczyznę, R 3 = {(x, y, z) : x, y, z R} przestrzeń. Odległość punktów będziemy określali następująco: P 1 P 0 = P 1 P 0 = (x 1
Bardziej szczegółowoCałki krzywoliniowe wiadomości wstępne
Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.
Bardziej szczegółowoRachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Bardziej szczegółowoNiektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoMechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Bardziej szczegółowolim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Bardziej szczegółowoUniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Bardziej szczegółowoRACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH
RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które
Bardziej szczegółowo28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
Bardziej szczegółowoAnaliza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Bardziej szczegółowoi = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoRachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Bardziej szczegółowo7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Bardziej szczegółowoCałki powierzchniowe w R n
Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy
Bardziej szczegółowo22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
Bardziej szczegółowoMatematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
Bardziej szczegółowoWykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Bardziej szczegółowoANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Bardziej szczegółowoRachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Bardziej szczegółowoDefinicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem
Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)
Bardziej szczegółowoKrzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Bardziej szczegółowoANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie dziewiąte powiększone GiS Oficyna Wydawnicza GiS Wrocław Projekt okładki: IMPRESJA Studio
Bardziej szczegółowoPrzekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Bardziej szczegółowoObliczanie długości łuku krzywych. Autorzy: Witold Majdak
Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną
Bardziej szczegółowo1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Bardziej szczegółowoANALIZA MATEMATYCZNA 2.2B (2017/18)
ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać
Bardziej szczegółowoZadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Bardziej szczegółowoR o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
Bardziej szczegółowo1. RACHUNEK WEKTOROWY
1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe
Bardziej szczegółowoWykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Bardziej szczegółowo1 x + 1 dxdy, gdzie obszar D jest ograniczo-
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Zad.1 Całkę podwójną przez: a) y =, y =, = 1; b) y =, y =, y = 1; c) y =, y = 1, y = 5; d) y = ln, y = + 1, y = 1; e) y = ln, = e, y = 1;
Bardziej szczegółowo9. Mimośrodowe działanie siły
9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.
Bardziej szczegółowoRównanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Bardziej szczegółowoWykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Bardziej szczegółowoPrzekształcenia liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się
Bardziej szczegółowo8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Bardziej szczegółowoDystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Bardziej szczegółowoSekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy
Bardziej szczegółowoLista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Bardziej szczegółowoEkoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
Bardziej szczegółowomechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Bardziej szczegółowoKONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Bardziej szczegółowoJ. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Bardziej szczegółowoFizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Bardziej szczegółowoZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
Bardziej szczegółowoAnaliza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
Bardziej szczegółowo4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Bardziej szczegółowo24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA
4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.
Bardziej szczegółowoDydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 9: Geometria w szkole geometria dynamiczna, miejsca geometryczne, przekształcenia geometryczne Semestr zimowy 2018/2019 DGS = Dynamic Geometry
Bardziej szczegółowoProsta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Bardziej szczegółowoMatematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Bardziej szczegółowoWAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Bardziej szczegółowo1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowoRównania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Bardziej szczegółowoMECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Bardziej szczegółowoWażną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Bardziej szczegółowoElektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowoFizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
Bardziej szczegółowoRównania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Bardziej szczegółowoRozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady
Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X
Bardziej szczegółowoPrzykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Bardziej szczegółowoIloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
Bardziej szczegółowo