Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1
|
|
- Dagmara Markiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 II KOLOKWIUM Z AM M1 - GRUPA A r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie 1 Czy funkcja zadana wzorem f = e e jest jednostajnie ci gªa na przedziale otwartym 0, 1? Odpowied¹ dokªadnie uzasadnij Odpowied¹: TAK Najpierw zauwa»my, ze funkcja f posiada przedªu»enie ci gªe na przedziale [0, 1] W tym celu policzmy prawostronn granic funkcji f w punkcie 0 na dwa sposoby: e e 0 + e 1 = 1 + e = 0 + e e 0 + [ ] 0 H e 1 e + e e = 1 = = Wówczas funkcja f zdeniowana wzorem 0 + dla = 0 f = f dla 0, 1 f1 dla = 1 = dla = 1 f dla 0, 1 e e 1 dla = 1 Zadanie jest funkcj ci gª na przedziale domkni tym Na mocy twierdzenia Cantora jest na tym przedziale jednostajnie ci gªa Poniewa» ka»de obci cie funkcji jednostajnie ci gªej jest funkcj jednostajnie ci gª vide denicja, to funkcja f jest jednostajnie ci gª na 0, 1, gdy» f = f 0, 1 Powoªuj c si na odpowiednie twierdzenia, uzasadnij,»e równanie 1 = cos ma dokªadnie jeden pierwiastek w przedziale 3π, π Rozwa»amy funkcj f = cos 1 okre±lon dla 3π, π Funkcja f jest ewidentnie funkcj ci gª na przedziale [ 3π, π], wi c ma na tym przedziale wªasno± Darbou na mocy twierdzenia Bolzano-Cauchy'ego Poniewa» f 3π = 0 < 0 3π
2 oraz f π = 1 1 > 0, to istnieje liczba π 3π, π, która jest miejscem zerowym funkcji f, a wi c pierwiastkiem równania z zadania Poka»emy,»e innych pierwiastków nie ma Zaªó»my nie wprost,»e jednak taki - ró»ny od - pierwiastek istnieje w rzeczonym przedziale; bez straty ogólno±ci mo»emy zaªo»y,»e < Wtedy f = f = 0 oraz funkcja f jest ró»niczkowalna w [, ] 3π, π Speªnione s wi c zaªo»enia twierdzenia Rolle'a, a st d zachodzi jego teza: istnieje z, taki,»e f z = 0 Oznacza to,»e sin z + 1 = 0, czyli sin z = z z Jednak»e sin z < 0 < z, bo sinus przyjmuje warto±ci ujemne w przedziale 3π, π Sprzeczno± dowodzi,»e powy»szy nie istnieje i jest jedynym miejscem zerowym funkcji f w przedziale 3π, π, a tym samym jest jedynym pierwiastkiem równania z zadania Zadanie 3 Udowodnij,»e dla wszystkich 0, + zachodzi nierówno± 3 sin < + cos Zauwa»my najpierw,»e wystarczy udowodni powy»sz nierowno± dla 0, π]: je±li π, π], to 3 sin < 0 < + cos ; je±li nπ, n + 1π], n N, i nierówno± jest speªniona dla 0, π] to 3 sin + nπ = 3 sin < + cos < + nπ + cos + nπ niezbyt istotny dla rozwi zania detal, którego brak nie kosztowaªby»adnego punktu Nierówno± dowodzimy standardow metod : porównuj c dwie funkcje ró»niczkowalne f i g, pierwsza b dzie wi ksza od drugiej, gdy f bedzie rosªa stale 'szybciej' od g oraz obie b d startowaªy z tego samego punktu, czyli f > g dla > 0, gdy f0 = g0 i f > g oczywi±cie to to samo, co sprawdzi,»e funkcja h = f g jest ±ci±le rosn ca i h0 = 0 Trzeba tylko tak dobra funkcje, aby nie ró»niczkowa okropno±ci - w tym przypadku iloczynu wielomianu i ftrygonometrycznych bo nierówno± mi dzy pochodnymi wci» mo»e nie by 'oczywista' Najlepiej si pozby w trakcie ró»niczkowania jednego z typów funkcji; sinus i cosinus s nieusuwalne ró»niczkuj c je zawsze wyskoczy nam ten sam 'typ'; z wielomianami jest lepiej - tutaj po zró»niczkowaniu staje si liczb Dlatego te» sprawdzimy,»e dla f = i g = 3 sin +cos zachodzi f0 = g0 oraz f > g Tylko to ostatnie nie jest trywialne: f g = 1 3 cos + cos 3 sin sin + cos = + cos cos + cos = = 1 cos + cos + cos = 1 cos > 0, + cos gdy» cos < 1 dla 0, π] po to byl pierwszy akapit -»eby miec ostra nierówno±
3 Zadanie 4 Okre±l, ile trzeba wzi pocz tkowych wyrazów w rozwini ciu Taylora odpowiedniej funkcji, a»eby nie popeªni bª du wi kszego ni» 10 4, szacuj c warto± liczby ln 3 ln Odpowied¹ uzasadnij Poniewa» ln 3 ln = ln1 + 1, wybieramy funkcje f = ln1 + i rozwijamy j wokóª 0 Dlaczego? Bo kolejne pochodne funkcji s ªatwe do policzenia i, szacuj c reszt w rozwini ciu, b dziemy musieli poradzi sobie z wyra»eniem typu C 1 n, n! które jest zno±niejsze przy szacowaniach Licz c kolejne pochodne, dostajemy ªatwy do zauwa»enia wzór f n n 1 n 1! = 1 dla n N + 1 n eby wskaza odpowiednie n wystarczy znale¹ takie, które speªnia nierówno± reszta w postaci Lagrange'a, c 0, 1: f n n c 1 n n = n! 1 n 1 < 1 c + 1 n n 10 4 Šatwo zauwa»y,»e ostatnia nierówno± speªnia n = 10, gdy» 1 1 = 1 1 < Podsumowuj c, trzeba wzi 10 pocz tkowych wyrazów w rozwini ciu Taylora funkcji f = ln1 + wokóª 0, aby mie pewno± niepopeªnienia bª du wi kszego ni» 10 4 przy szacowaniu warto±ci liczby ln 3 ln 10 4 Zadanie 5 Wyznacz caªk nieoznaczon funkcji f = 1 dla [1, + dla [0, 1 0 dla, 0 Liczymy dwie caªki, z których na ko«cu 'skleimy' szukan caªk nieoznaczon F 1 = 1d = t = 1 = 1 + t d = t dt = 1 + t tt dt = t 1 + t dt = = t t + C 1 = t + C 1 = C 1 F = d = d = sin t = 1 t = arcsin1 1 cos tdt = d cos t = = = 1 1 sin t 1 cos tdt = 4 1 cos t dt = 1 1+cos t 4 dt = t sin t + C = [ ] = 8 1 t + sin t cos t + C = 1 8 arcsin C [0, 1 t [ π, π F 1 dla [1, + St d szukana caªka b dzie miaªa posta F = F dla [0, 1 C 3 dla, 0
4 Trzeba tylko tak dobra staªe, aby dosta F ró»niczkowalna Przede wszystkim trzeba zadba o ci gªo± F Musi dlatego zachodzi poni»sze dwie równo±ci F 1 1 = 1 F C 1 = 1 8 arcsin 1 + C = π 16 + C C = C 1 π 16 F 0 = C arcsin 1 + C = C 3 C 3 = C π 16 = C 1 π 8 Zadanie 6 Zatem jedynym kandydatem na nasz funkcj pierwotn mo»e by { F = dla [1, arcsin π dla [0, 1 π dla, 0 8 Šatwo wida,»e faktycznie F jest funkcja ró»niczkowaln : mo»na liczy z denicji pochodne jednostronne w 'podejrzanych' punktach niepolecane, mo»na powoªa si na odpowiedni wniosek z tw Lagrange'a kryterium ró»niczkowalno±ci w zale»no±ci od istnienia i równo±ci odpowiednich granic pochodnych lub mo»na powoªa si na fakt,»e funkcja ci gªa a f jest ci gªa! zawsze ma funkcj pierwotn - funkcj górnej granicy caªkowania - oraz caªka Riemanna jest 'niewra»liwa' na modykacje funkcji podcaªkowej w sko«czonej ilo±ci punktów F R\{0,1} jest ewidentnie funkcj pierwotn funkcji f R\{0,1} + C Niech funkcja f : 0, + 1, + b dzie ró»niczkowalna i zaªó»my,»e istnieje granica f + f + cho by w sensie niewªa±ciwym Poka»,»e wówczas granica funkcji f w + równie» istnieje oraz zachodzi f = f + f + + Z warunków zadania wynika,»e f 1, a st d + e f = + To wraz z zaªo»eniem istnienia granicy f + f uprawnia do korzystania z + reguªy de L'Hospitala w nast puj cy sposób: f = e f [ ] H e f + + e + e = = + 1 e f + e f 1 e = f + f +
5 II KOLOKWIUM Z AM M1 - GRUPA B r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie 1 Czy funkcja zadana wzorem f = sinln+1 jest jednostajnie ci gªa na przedziale otwartym 0, +? Odpowied¹ dokªadnie uzasadnij Zadanie Odpowied¹: TAK Najpierw zauwa»my,»e funkcja f ma ograniczon pochodn na przedziale 0, + : f = sinln + 1 = cosln Zatem funkcja f jest funkcj Lipschitza wniosek z tw Lagrange'a z wicze«ze staª równ 1, a wi c jest funkcj jednostajnie ci gª na swojej dziedzinie vide denicja lub odpowiednie zadanie na wiczeniach Powoªuj c si na odpowiednie twierdzenia, uzasadnij,»e równanie ln = cos ma dokªadnie jeden pierwiastek w przedziale 0, π Rozwa»amy funkcj f = ln cos okre±lon dla 0, π Funkcja f jest funkcj ci gª na przedziale 0, π, wi c ma na tym przedziale wªasno± Darbou na mocy twierdzenia Bolzano-Cauchy'ego Poniewa» 0 + f = < 0 oraz = ln π > ln 1 = 0, to istnieje liczba 0, π, która jest miejscem zerowym f π funkcji f, a wi c pierwiastkiem równania z zadania Poka»emy,»e innych pierwiastków nie ma Zaªó»my nie wprost,»e jednak taki - ró»ny od - pierwiastek istnieje w rzeczonym przedziale; bez straty ogólno±ci mo»emy zaªo»y,»e < Wtedy f = f = 0 oraz funkcja f jest ró»niczkowalna w [, ] 0, π Speªnione s wi c zaªo»enia twierdzenia Rolle'a, a st d zachodzi jego teza: istnieje z, taki,»e f z = 0 Oznacza to,»e 1 + sin z = 0, czyli sin z = z z 1 Jednak»e zachodzi z 1 < 0 < sin z, bo sinus przyjmuje warto±ci dodatnie w przedziale 0, π Sprzeczno± dowodzi,»e powy»szy nie istnieje i jest jedynym miejscem zerowym funkcji f w przedziale 0, π, a tym samym jest jedynym pierwiastkiem równania z zadania
6 Zadanie 3 Udowodnij,»e dla wszystkich 0, π zachodzi nierówno± Zadanie 4 sin > cos Nierówno± dowodzimy standardow metod : porównuj c dwie funkcje ró»niczkowalne f i g, pierwsza b dzie wi ksza od drugiej, gdy f b dzie rosªa stale 'szybciej' od g oraz obie b d startowaªy z tego samego punktu, czyli f > g dla > 0, gdy f0 = g0 i f > g oczywi±cie to to samo, co sprawdzi,»e funkcja h = f g jest ±ci±le rosn ca i h0 = 0 Trzeba tylko tak dobra funkcje, aby nie ró»niczkowa okropno±ci - w tym przypadku iloczynu wielomianu i ftrygonometrycznych bo nierówno± mi dzy pochodnymi wci» mo»e nie by 'oczywista' Najlepiej si pozby w trakcie ró»niczkowania jednego z typów funkcji; sinus i cosinus sa nieusuwalne ró»niczkuj c je zawsze wyskoczy nam ten sam 'typ'; z wielomianami jest lepiej - tutaj po zró»niczkowaniu staje si liczb Dlatego te» sprawdzimy,»e dla f = sin cos i g = zachodzi f0 = g0 oraz f > g Tylko to ostatnie nie jest trywialne: f g = cos cos sin sin cos cos = cos + 1 cos cos cos cos gdy» cos < 1 dla 0, π cos cos + 1 cos cos 1 = cos + sin cos cos 1 = = cos 1 cos cos > 0, Okre±l, ile trzeba wzi pocz tkowych wyrazów w rozwini ciu Taylora odpowiedniej funkcji, a»eby nie popeªni bª du wi kszego ni» 10 4, szacuj c warto± liczby e 4 Odpowied¹ uzasadnij Wybieramy funkcj f = e i rozwijamy j wokóª 0 Dlaczego? Bo kolejne pochodne funkcji s ªatwe do policzenia nie ma tu»adnego skªadania funkcji i, szacuj c reszt w rozwini ciu, b dziemy musieli poradzi sobie z wyra»eniem typu C n 4, które jest n! zno±niejsze przy szacowaniach Oczywi±cie mamy f n = e dla n N eby wskaza odpowiednie n wystarczy znale¹ takie, które speªnia nierówno± reszta w postaci Lagrange'a, c 0, 4 : f n c n! 4 n = ec n! n 10 4 < n! n 1 4 < 10 4 pierwsza nierownosc zachodzi, gdyz e c 4 < e < e < 9 < 10 St d wystarczy znale¹ n takie,»e n 4 1 < 1 Šatwo zauwa»y,»e ostatnia nierówno± speªnia n = 1, gdy» 1 1 n! = 8 = 1 1 < 1 1 = 1 Podsumowuj c, 1! 1! 7!
7 trzeba wzi 1 pocz tkowych wyrazów w rozwini ciu Taylora funkcji f = e wokóª 0, aby mie pewno± niepopeªnienia bª du wi kszego ni» 10 4 przy szacowaniu warto±ci liczby e 4 Zadanie 5 Wyznacz caªk nieoznaczon funkcji f = ln ln e + ln e e dla [ e, + ln dla [1, e ln 0 dla, 1 Liczymy dwie caªki, z których na ko«cu 'skleimy' szukan caªk nieoznaczon Oznaczmy dla skrócenia zapisu D = ln e + ln e e Poniewa» mamy równo± ln + Dd = ln d + D, to skupiamy si na przedostatniej caªce F 1 D = ln u = 1 v = ln d = u = v = 1 ln = ln ln d = = u = 1 v = ln u = v = 1 = ln ln d = ln ln + + C 1 F = ln ln d = t = ln dt = d ln = t + ln = dt t+ln = 1 t+ln ln dt = = t ln dt t+ln = t ln lnt + ln + C = ln ln ln ln + C F 1 dla [ e, + St d szukana caªka b dzie miaªa posta F = F dla [1, e C 3 dla, 1 Trzeba tylko tak dobra staªe, aby dosta F ró»niczkowalna Przede wszystkim trzeba zadba o ci gªo± F Musz dlatego zachodzi poni»sze dwie równo±ci F 1 e = e F e ln e ln e + + D + C 1 = ln e + C C = C 1 + e ln F 1 = C 3 ln ln ln + C = C 3 C 3 = C ln ln ln = C 1 + ln e ln ln Zatem jedynym kandydatem na nasz funkcj pierwotn mo»e by F = { ln ln + + D dla [1, + ln ln ln ln + e ln dla [0, 1 ln e ln ln dla, 0 + C Šatwo wida,»e faktycznie F jest funkcj ró»niczkowalna: mo»na liczy z denicji pochodne jednostronne w 'podejrzanych' punktach niepolecane, mo»na powoªa si na odpowiedni wniosek z tw Lagrange'a kryterium ró»niczkowalno±ci w zale»no±ci od istnienia i równo±ci odpowiednich granic pochodnych lub mo»na powoªa si na fakt,»e funkcja ci gª a f jest ci gª! zawsze ma funkcj pierwotn - funkcj górnej granicy caªkowania - oraz caªka Riemanna jest 'niewra»liwa' na modykacje funkcji podcaªkowej w sko«czonej ilo±ci punktów F R\{1, e } jest ewidentnie funkcj pierwotn funkcji f R\{1, e }
8 Zadanie 6 Niech funkcja f : 0, + 1, + b dzie ró»niczkowalna i zaªó»my,»e istnieje granica f f cho by w sensie niewªa±ciwym Poka»,»e wówczas granica funkcji f w + równie» istnieje oraz zachodzi f = f f Z warunków zadania wynika,»e f 1, a st d + e f = + To wraz z zaªo»eniem istnienia granicy f f uprawnia do korzystania z reguªy de L'Hospitala w nast puj cy sposób: f = + e f [ ] H + e + e f e = e f + e f = = f e + f
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
Bardziej szczegółowof(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:
Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci
Bardziej szczegółowo1 Granice funkcji wielu zmiennych.
AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica
Bardziej szczegółowoRównania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Bardziej szczegółowoSzkice rozwi za«zada«z egzaminu 1
Egzamin - szkic rozwi za«sem. zimowy 06/07 AM, Budownictwo, IL PW Szkice rozwi za«zada«z egzaminu. Poda denicj granicy oraz ci gªo±ci funkcji. Def. (Heinego) Liczb g nazywamy granic funkcji f : D R w unkcie
Bardziej szczegółowoAM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego
Bardziej szczegółowoLiczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
Bardziej szczegółowopunkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:
5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowo1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Bardziej szczegółowoXVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Bardziej szczegółowoKolokwium Zadanie 1. Dla jakich warto±ci parametrów a i b funkcja sklejona
Kolokwium 3 0.0. Zadanie. Dla jakich warto±ci parametrów a i b funkcja sklejona a : π, f() = cos() : π < π, a + b : π < jest ci gªa? Rozwi zanie: Funkcja jest ci gªa we wszystkich punktach poza, by mo»e,
Bardziej szczegółowoFunkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)
Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem
Bardziej szczegółowoANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu
Bardziej szczegółowoMetody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Bardziej szczegółowoEkstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
Bardziej szczegółowo1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =
Bardziej szczegółowoI Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,
Bardziej szczegółowoRozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).
Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi
Bardziej szczegółowoInterpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoInformacje pomocnicze:
dr Krzysztof yjewski Informatyka; S-I 0.in». 7 grudnia 06 Rachunek caªkowy funkcji jednej zmiennej. Caªka nieoznaczona. przydatne wzory: Informacje pomocnicze: Lp. Wzór Uwagi. dx = x c. adx = ax c 3. x
Bardziej szczegółowoWykªad 12. Transformata Laplace'a i metoda operatorowa
Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e
Bardziej szczegółowoFAQ ANALIZA R c ZADANIA
FAQ ANALIZA R c ZADANIA Rachunek ró»niczkowy wersja wst na uwaga na bª dy!!! Zadania oznaczone R maj wskazówki lub rozwi zania na ko«cu liku. Zadania rozwi zywali: Grzegorz Cieciura, Katarzyna Grabowska,
Bardziej szczegółowoZADANIA. Maciej Zakarczemny
ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1
Bardziej szczegółowoMateriaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Bardziej szczegółowoCAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
Bardziej szczegółowoRachunek ró»niczkowy funkcji jednej zmiennej
Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =
Bardziej szczegółowo1 Caªki nieoznaczone: caªkowanie jako operacja (prawie) odwrotna do ró»niczkowania
1 Caªki nieoznaczone: caªkowanie jako operacja (prawie) odwrotna do ró»niczkowania 1.1 Podstawowe denicje Def. Funkcj F nazywamy funkcj pierwotn funkcji f, okre±lonej w przedziale otwartym P (sko«czonym
Bardziej szczegółowoFunkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)
Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji
Bardziej szczegółowoPrzekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Bardziej szczegółowoLiniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach
Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie
Bardziej szczegółowoWykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoZagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoRachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Bardziej szczegółowo1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoAnaliza Matematyczna MAT1317
Analiza Matematyczna MAT37 Wydziaª Informatyki i Zarz dzania Listy zada«nr -0 cz ±ciowo na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykªady i zadania, GiS, Wrocªaw 008 M.Gewert,
Bardziej szczegółowosin x 1+cos 2x. 3. Znajd¹ okres podstawowy funkcji: 6) f(x) = cos(4πx + 2), 8) f(x) = cos 2 x, 9) f(x) = tg πx 4) f 1 ([1, 9]), 5) f ([ 1, 1]),
WBiA In»ynieria rodowiska Matematyka wiczenia. Wyja±nij poj cia: funkcja dziedzina dziedzina naturalna przeciwdziedzina zbiór warto±ci iniekcja suriekcja bijekcja funkcja nie)rosn ca nie)malej ca wkl sªa
Bardziej szczegółowoFunkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
Bardziej szczegółowoWielomiany o wspóªczynnikach rzeczywistych
Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0
Bardziej szczegółowoPochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +
Bardziej szczegółowoWybrane poj cia i twierdzenia z wykªadu z teorii liczb
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych
Bardziej szczegółowoCiaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1
Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Bardziej szczegółowoTwierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Bardziej szczegółowoLista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykªadnicza
Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykªadnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym ukªadzie wspóªrz dnych wykresy
Bardziej szczegółowo7 Ukªady równa«ró»niczkowych zwyczajnych liniowych. Równania ró»niczkowe zwyczajne liniowe wy»szych rz dów
Ukªady r-na«ró»niczkowych liniowych. R-nia liniowe wy»szych rz dów 71 7 Ukªady równa«ró»niczkowych zwyczajnych liniowych. Równania ró»niczkowe zwyczajne liniowe wy»szych rz dów 7.1 Nierówno± Gronwalla
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej
Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoOba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).
Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1
Bardziej szczegółowoWykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Bardziej szczegółowoA = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Bardziej szczegółowoWBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0
WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które
Bardziej szczegółowoZbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Bardziej szczegółowoLegalna ±ci ga z RRI 2015/2016
Legalna ±ci ga z RRI 205/206 Równania ró»niczkowe pierwszego rz du sprowadzalne do równa«o zmiennych rozdzielonych a) Równanie postaci: = f(ax + by + c), Równanie postaci: = f(ax + by + c), () wprowadzamy
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Bardziej szczegółowoO pewnym zadaniu olimpijskim
O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby
Bardziej szczegółowoZadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
Bardziej szczegółowoStatystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
Bardziej szczegółowoWST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
Bardziej szczegółowoELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
Bardziej szczegółowoX WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)
X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru
Bardziej szczegółowoTwierdzenie Wedderburna Witold Tomaszewski
Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem
Bardziej szczegółowo1 Ró»niczka drugiego rz du i ekstrema
Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych
Bardziej szczegółowoSzereg Taylora Javier de Lucas. f k) (x 0 ) (x x 0 ) k + R n (x, x 0 ), k! (x x 0 ) k k!
Szereg Taylora Javier de Lucas Zadanie 1. Wyka»,»e e x > 1 + x dla ka»dego x 0. Rozwiazanie: Funkcja f : x R e x R jest niesko«czenie wiele razy ró»niczkowalna w R. Z tego powodu, dla ka»dych x, x 0 R
Bardziej szczegółowoStrategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
Bardziej szczegółowoFunkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina
Poj cie unkcji i podstawowe wªasno±ci Alina Semrau-Giªka Uniwerstet Technoloiczno-Przrodnicz 30 stcznia 209 Funkcj ze zbioru X w zbiór Y nazwam odwzorowanie, które ka»demu elementowi ze zbioru X przporz
Bardziej szczegółowo4 Prawa zachowania. Fale uderzeniowe
Prawa zachowania. Fale uderzeniowe 41 4 Prawa zachowania. Fale uderzeniowe W niniejszych notatkach, oprócz literatury wymienionej na stronie internetowej, korzystam te» z nast puj cych artykuªów: ˆ A.
Bardziej szczegółowo2 Podstawowe obiekty kombinatoryczne
2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,
Bardziej szczegółowoStrategie zabezpieczaj ce
04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech
Bardziej szczegółowoZad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
Bardziej szczegółowoWST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Bardziej szczegółowoMatematyka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowych
Matematka II: Zadania przed 3. terminem S tu niektóre zadania z egzaminu z rozwi zaniami i troch dodatkowch. Znale¹ ekstrema lokalne funkcji f(, ) = ( 2 + 2 2 )e (2 + 2 ) Odp. Jedno minimum (w p. (, )),
Bardziej szczegółowoMetoda tablic semantycznych. 1 Metoda tablic semantycznych
1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera
Bardziej szczegółowoOpis matematyczny ukªadów liniowych
Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór
Bardziej szczegółowo2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Bardziej szczegółowo1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Bardziej szczegółowoUkªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Bardziej szczegółowo1 Funkcje i ich granice
Funkcje i ich granice Byªo: Zbiór argumentów; zbiór warto±ci; monotoniczno± ; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotno±ci; funkcja
Bardziej szczegółowo10. arccos 3 + 4x, 11. tg sin cos x, 12. arcctg x ctg 2x, arcsin(2x 1) arcsin 2x 1, 21. sin2 x 2 1,
. Nawiasy Dopisz nawiasy jak w przykªadzie: ln cos 4 + = ln((cos(4)) ) +. sin,. ln 3 +, 3. tg ctg, 4. sin, 5. log 3 4, 6. arcsin sin, 7. tg 4 3, 8. log, 9. cos +3, 0. arccos 3 + 4,. tg sin cos,. arcctg
Bardziej szczegółowoWykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007
Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................
Bardziej szczegółowoMatematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci
Bardziej szczegółowoRelacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Bardziej szczegółowo1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,
XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1
Bardziej szczegółowodet A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Bardziej szczegółowoWYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie
WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.
Bardziej szczegółowoEGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Bardziej szczegółowoMatematyka dyskretna dla informatyków
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne
Bardziej szczegółowoMacierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Bardziej szczegółowoWykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski
Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej A. Bobrowski Spis tre±ci Teoria zbie»no±ci ci gów liczbowych strona 6. Gªówne zagadnienia 6.2 Granice sko«czone i niesko«czone
Bardziej szczegółowoJAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Bardziej szczegółowoMatematyka dla studentów Zarz dzania UW. Marcin Kysiak, Roman Pol
Matematyka dla studentów Zarz dzania UW Marcin Kysiak, Roman Pol 14 grudnia 2012 2 Wst p Omawiany przez nas material obejmuje zagadnienia z rachunku ró»niczkowego i caªkowego przewidziane w programie studiów
Bardziej szczegółowoInterpolacja Lagrange'a, bazy wielomianów
Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,
Bardziej szczegółowo