(U.5) Zasada nieoznaczoności

Wielkość: px
Rozpocząć pokaz od strony:

Download "(U.5) Zasada nieoznaczoności"

Transkrypt

1 (U.5) Zasaa nieoznaczoności 42 Rozział 26 (U.5) Zasaa nieoznaczoności 26. Pakiet falowy minimalizujący zasaę nieoznaczoności 26.. Wyprowazenie postaci pakietu Stan kwantowo-mechaniczny (lub funkcja falowa) minimalizujący zasaę nieoznaczoności spełnia równanie (5.26) (Ã iλ B) ϕ( x) = 0, (26.) przy czym parametr λ R zaany jest wzorem (5.27). Rozważymy teraz pakiet falowy związany z cząstką o śrenim położeniu x = a i śrenim pęzie p = b. Ograniczymy się, la prostoty rachunków, o sytuacji jenowymiarowej. A zatem okonujemy utożsamienia operatorów: Ã = ˆx a = x a, B = ˆp b = p b. (26.2) Oczywiście, zgonie z (5.) mamy teraz iĉ = Ã, B = x, p = i, (26.3) więc Ĉ =. Zatem parametr λ w relacji (26.), na to aby zgonie z (5.27) zminimalizować zasaę nieoznaczoności, przyjmuje wartość λ = 2σ 2 (p) = 2σ2 (x). (26.4) Korzystając więc z utożsamień (26.2) i mając parametr λ, na postawie (26.) buujemy równanie la poszukiwanego pakietu falowego ( (x a) iλ i ) x b ϕ(x) = 0. (26.5) Jest to równanie o rozzielających się zmiennych, które możemy przepisać w postaci ϕ(x) x a + iλb x = λ ϕ(x) (26.6) Scałkowanie tego równania jest trywialne, w wyniku otrzymujemy x 2 ax + iλbx + C = ln ϕ(x). (26.7) λ 2 S.Kryszewski MECHANIKA KWANTOWA 42

2 (U.5) Zasaa nieoznaczoności 43 Owracając logarytm i wprowazając nową stałą owolną e C = A piszemy x 2 ϕ(x) = A exp 2λ ax λ + ibx. (26.8) Pojawiającą się w rezultacie całkowania stałą owolną utożsamiamy ze stałą normalizacyjną, którą bęziemy musieli później wyznaczyć, a na razie możemy nią manipulować. W tym celu przepiszmy powyższe równanie w postaci ϕ(x) = A exp (x 2 2ax + a 2) a2 2λ 2λ + ibx iba + iba. (26.9) Włączając człony rugi i piąty o nowej stałej normalizacyjnej zapisujemy otrzymany pakiet falowy jako (x a) ϕ(x) = A 2 exp + ib 2λ (x a). (26.0) Postać taka jest wygoniejsza o alszej yskusji, zaś A to po prostu (nowa) stała normalizacyjna. Zwróćmy uwagę, że uzyskana funkcja falowa ϕ(x) ma być normowalna, a więc parametr λ musi być ujemny. Szczęśliwie tak jest, co wiać z relacji (26.4), bowiem yspersje zawsze są oatnie. Dlatego też zapiszemy w końcu ϕ(x) w postaci ϕ(x) = A (x a)2 exp 2 λ + ib (x a). (26.) Za pomocą warunku normalizacyjnego x ϕ(x) 2 =, (26.2) musimy obliczyć stałą normalizacyjną A. Przy obliczaniu kwaratu moułu czynnik urojony w eksponencie wzoru (26.) znosi się. Pozostaje o obliczenia całka = A 2 (x a)2 x exp. (26.3) λ Całkę tę łatwo obliczamy okonując zamiany zmiennej całkowania y = (x a)/ λ i wieząc, że y exp( y2 ) = π. W rezultacie otrzymujemy A 2 = π λ = A = ( ) /4, (26.4) π λ przy czym w rugiej równości fazę owolną wybraliśmy równą zeru. Wobec tego mamy ( ) /4 (x a)2 ϕ(x) = exp π λ 2 λ + ib (x a). (26.5) Postawiając wprowazone wcześniej oznaczenia, stwierzamy że ϕ(x) = ( ) /4 2πσ 2 exp (x) (x x )2 4σ 2 (x) + i p (x x ). (26.6) przestawia pakiet falowy (funkcję falową) minimalizujący zasaę nieoznaczoności. Oczywiście powstaje pytanie, jak uzyskany tu pakiet ma się o pakietu yskutowanego uprzenio (patrz (23.73) i ((25.)). S.Kryszewski MECHANIKA KWANTOWA 43

3 (U.5) Zasaa nieoznaczoności Dyskusja wyników W poprzenich rozziałach baaliśmy ewolucję czasową gaussowskiego pakietu falowego, który wyraża się wzorem e iθ(t) ψ(x, t) = e ikox iω 0t exp (x v 0t) 2 4 a 2 π ( + σ 2 t 2 ) 2a 2, (26.7) ( + iσt) gzie oznaczenia są omówione po formule (25.). Dla pakietu tego obliczyliśmy wartości oczekiwane x = v 0 t, x 2 = 2 a2 ( + σ 2 t 2) + v 2 0t 2, p = k 0, p 2 = 2 k a 2, (26.8) co oczywiście pozwala wyznaczyć opowienie (zależne o czasu) yspersje σ 2 t (x) = 2 a2 ( + σ 2 t 2), σ 2 t (p) = 2 2a 2. (26.9) Dyspersja położenia cząstki (pakietu) rośnie kwaratowo w czasie, a pęu jest stała. Pakiet opisuje cząstkę swoboną (nie oziałującą). Zatem nie ma powou, aby zmianom ulegał pę cząstki. Dlatego fakt, że σ 2 t (p) = const., wyaje się być zrozumiały. Wiemy, że pakiet rozmywa się w przestrzeni. Ozwiercieleniem tego jest rosnąca w czasie yspersja σ 2 t (x). Iloczyn obu yspersji wynosi σt 2 (x)σt 2 (p) = 2 ( + σ 2 t 2), (26.20) 4 i la ostatecznie ługich czasów t może mieć owolnie użą wartość. Z relacji tej wizimy, że minimalizacja zasay nieoznaczoności może nastąpić jeynie w chwili początkowej t = 0. W chwili tej pakiet (26.7) reukuje się o ψ(x, t = 0) = 4 a 2 π eikox exp x2 2a 2, (26.2) Jenocześnie z (26.9) mamy σ 2 0 (x) = 2 a2, więc ψ(x, t = 0) = e 4 2πσ ik o x exp x2 0 2(x) 4σ0 2(x),. (26.22) Ponieważ jeszcze k 0 = p / oraz x 0 = 0, więc wizimy, że pakiet ϕ(x) any w (26.6) pokrywa się z powyższym. Minimalizacja zasay nieoznaczoności zachozi w chwili początkowej, a wraz z upływem czasu "psuje się" co pokazuje iloczyn yspersji (26.20) Dyskusja oświaczenia interferencyjnego Wróćmy teraz o oświaczenia z interferencją cząstek. Dyskutując ją poprzenio stwierziliśmy, że nie można określić, przez którą szczelinę przejzie cząstka, o ile tylko nie chcemy zniszczyć obrazu (prążków) interferencyjnych. Cząstka paająca na przesłonę ma pę p = (0, p 0, 0). Ulega ona yfrakcji na jenej ze szczelin i paa na ekran w punkcie M, patrz rysunek 26.. A więc po przejściu przez szczelinę S.Kryszewski MECHANIKA KWANTOWA 44

4 (U.5) Zasaa nieoznaczoności 45 cząstka ma pewien pę w kierunku poprzecznym, tj. w kierunku osi x. Całkowity pę musi być zachowany, a więc przesłona absorbuje zmiany pęu p (i) x = p 0 sin θ i, (26.23) gzie i =, 2 numeruje szczelinę przez którą przeszła cząstka. W sytuacji przestawionej na rysunku cząstki uginają się "w górę", zatem przesłona oznaje przesunięcia w ół. Rys. 26.: Przesłona P jest na rolkach i może się przesuwać w górę lub w ół. Mierząc jej przesunięcie można zmierzyć wartość skłaowej pionowej pęu przekazanego płycie w wyniku ugięcia strumienia cząstek przechozących przez otwory. Pozwalamy cząstkom nabiegać pojeynczo i oczekujemy, że po pewnym czasie na ekranie powstaną prążki interferencyjne. Dzięki pomiarom przesunięć przesłony przy przejściu kolejnych cząstek możemy próbować określić, przez którą szczelinę przeszła ana cząstka. Zwracamy uwagę, że w tym rozumowaniu musi być jakaś sprzeczność, bowiem wiemy z oświaczenia, że określenie któręy przeszły kolejne cząstki powinno niszczyć obraz interferencyjny. Nasz błą polega na tym, że w powyższym rozumowaniu przyjęliśmy, iż cząstki mają naturę kwantowo-mechaniczną, zaś przesłonę potraktowaliśmy jako obiekt klasyczny. Przeprowazimy teraz " porząną" analizę opisanego eksperymentu. Aby rozstrzygnąć, przez którą szczelinę przeszła cząstka, błą pomiaru p pęu przesłony musi być użo mniejszy niż różnica pęów p () x i p (2) x (żeby rozróżnić kąty θ i θ 2 ) p p () x. (26.24) Traktując przesłonę jako obiekt także kwantowy, stosujemy o niej zasaę nieoznaczoności. Znów chozi nam o oszacowania, więc ponownie posłużymy się zasaą nieoznaczoności w intuicyjnej postaci (5.34). Szacujemy nieokreśloność jej położenia x p = p () x. (26.25) Z geometrii zaganienia (patrz rys. 26.) wynika, że la małych kątów sin θ x a/2, sin θ 2 x + a/2, (26.26) S.Kryszewski MECHANIKA KWANTOWA 45

5 (U.5) Zasaa nieoznaczoności 46 gzie x to współrzęna uerzenia cząstki w ekran (punkt M), zaś to oległość pomięzy ekranem a przesłoną. Ponieważ kąty są małe, na mocy (26.23), możemy napisać p () x = p 0 sin θ sin θ 2 p 0 θ θ 2 p 0 x a/2 x + a/2 = p 0 a. (26.27) Pę cząstki paającej p 0 wyrażamy teraz za pomocą postulatu e Broglie a p 0 = h/λ, wobec czego z oszacowania (26.27) otrzymujemy p () x ha λ. (26.28) Wynik ten postawiamy o oszacowania (26.25) la nieokreśloności położenia przesłony. Otrzymujemy więc x λ ha λ a. (26.29) Z elementarnej teorii interferencji wiemy jenak, że iloraz λ/a to nic innego niż oległość pomięzy prążkami interferencyjnymi. Wnioskujemy więc, że określenie położenia pionowego przesłony obywa się z okłanością gorszą niż oległość prążków, co w oczywisty sposób musi prowazić o zupełnego " rozmazania" obrazu interferencyjnego. Posumowując stwierzamy, że aby określić przez którą szczeliną przeszła cząstka powinien być spełniony warunek (26.24). Oszacowanie x w (26.29) uzyskaliśmy przy słabszym ograniczeniu, bowiem wzięliśmy zamiast (26.24) równość. A więc ostrzejszy wymóg nałożony na p tym barziej pogorszy x zwiększy je znacznie pona oszacowanie (26.29), co tym barziej popsuje obraz interferencyjny. Doświaczenie rozstrzygające któręy przejzie cząstka nie może jenocześnie oprowazić o powstania obrazu interferencyjnego. I na owrót, jeśli mamy obraz interferencyjny, to nie możemy określić, przez którą szczelinę przeszła kolejna cząstka. " Wieza o tym, któręy przeszła cząstka niszczy prążki interferencyjne". * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * S.Kryszewski MECHANIKA KWANTOWA 46

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

Harmoniki sferyczne. Dodatek C. C.1 Wprowadzenie. Całka normalizacyjna I p (n)

Harmoniki sferyczne. Dodatek C. C.1 Wprowadzenie. Całka normalizacyjna I p (n) 3.1.24 Do. mat. C. Harmoniki sferyczne 1 Doatek C Harmoniki sferyczne C.1 Wprowazenie Harmoniki sferyczne są funkcjami specjalnymi pojawiającymi się w wielu zaganieniach fizyki. W poręcznikach fizyki matematycznej

Bardziej szczegółowo

5 Reprezentacje połozeniowa i pedowa

5 Reprezentacje połozeniowa i pedowa 5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera 3.10.2004 4. Równanie Schröingera 52 Rozział 4 Równanie Schröingera Równanie Schröingera jest postulatem mechaniki kwantowej określającym tzw. ynamikę. Zaaje ono (przy opowienio obranym warunku początkowym)

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

3 Ewolucja układu w czasie, trajektorie kwantowe

3 Ewolucja układu w czasie, trajektorie kwantowe 3 Ewolucja układu w czasie, trajektorie kwantowe Pytanie: jak ewoluuje funkcja falowa stanu kwantowego ψ? W tym rozdzoale zajmiemy się ruchem cząstki w jednym wymiarze. 3.1 Trajektorie klasyczne Klasyczne

Bardziej szczegółowo

Ćwiczenie 71. Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie 71. Dyfrakcja światła na szczelinie pojedynczej i podwójnej Ćwiczenie 71. Dyfrakcja światła na szczelinie pojeynczej i powójnej Cel ćwiczenia Pomiar natęŝenia światła w obrazie yfrakcyjnym pojeynczej szczeliny i ukłau wu szczelin. Wyznaczenie rozmiaru szczelin.

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin

Bardziej szczegółowo

Zasada nieoznaczoności

Zasada nieoznaczoności 3.10.2004 5. Zasada nieoznaczoności 63 Rozdział 5 Zasada nieoznaczoności 5.1 Formalna zasada nieoznaczoności 5.1.1 Średnie i dyspersje. Pojęcia wstępne Niech Â, ˆB oraz Ĉ będą operatorami hermitowskimi

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Normalizacja funkcji falowej

Normalizacja funkcji falowej Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

(U.14) Oddziaływanie z polem elektromagnetycznym

(U.14) Oddziaływanie z polem elektromagnetycznym 3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych

Bardziej szczegółowo

jest więc blisko 2000 razy mniejsza niż masa nukleonu. Masa zredukowana elektronu w atomie 1 m e M

jest więc blisko 2000 razy mniejsza niż masa nukleonu. Masa zredukowana elektronu w atomie 1 m e M 3.1.4 15. Atom wooropoobny 161 Rozział 15 Atom wooropoobny UWAGA : W rozziale tym traktujemy elektron jako cząstkę bezspinową. Innymi słowy, nie bierzemy po uwagę faktu, że elektron posiaa spin 1/. W alszych

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

(U.6) Oscylator harmoniczny

(U.6) Oscylator harmoniczny 3.0.004 7. U.6 Oscylator harmoniczny 47 Rozdział 7 U.6 Oscylator harmoniczny 7. Rozwiązanie przez rozwinięcie w szereg W głównej części wykładu rozwiązanie zagadnienia własnego dla hamiltonianu kwantowo-mechanicznego

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Reprezentacje położeniowa i pędowa

Reprezentacje położeniowa i pędowa 3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU. Kraków, luty 2004 - kwiecień 2015

ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU. Kraków, luty 2004 - kwiecień 2015 Józef Zapłotny, Maria Nowotny-Różańska Zakła Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU Kraków, luty 2004 - kwiecień

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

11 Przybliżenie semiklasyczne

11 Przybliżenie semiklasyczne 11 Przybliżenie semiklasyczne W tym rozdziale rozważymy rachunek przybliżony, który opiera się na rozwinięciu funkcji falowej w szereg potęg stałej Plancka. Zakłada się przy tym jawnie, że h jest małym

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3 WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

(U.11) Obroty i moment pędu

(U.11) Obroty i moment pędu 3.10.2004 32. U.11) Obroty i moment pędu 96 Rozdział 32 U.11) Obroty i moment pędu 32.1 Wprowadzenie Obroty w przestrzeni R 3 są scharakteryzowane przez podanie osi obrotu, którą określa wektor jednostkowy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga

Zasada nieoznaczoności Heisenberga Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

21 Symetrie Grupy symetrii Grupa translacji

21 Symetrie Grupy symetrii Grupa translacji 21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo