użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter

Wielkość: px
Rozpocząć pokaz od strony:

Download "użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter"

Transkrypt

1 Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter schematy wielokrokowe podatne są na niestabilności w granicy małego kroku czasowego co nie ma odpowiednika w metodach jednokrokowych

2 metody jednokrokowe u =f(t,u) do wyliczenia u n używamy tylko u n-1, przeszłość ulega zapomnieniu Np. RK2 (punktu środkowego) Metody RK, są jednokrokowe i nieliniowe (nieliniowa zależność u n od f) Dla wykonania jednego kroku wyliczamy f między t n a t n+1. problem jeśli f bardzo kosztowna do wyliczenia metody RK dużej dokładności : wiele wywołań f

3 metody jednokrokowe (np. RK) u =f(t,u) do wyliczenia następnego kroku używamy tylko wartości z jednego poprzedniego p kroku. Wywołujemy wielokrotnie f między t n a t n+1, co może być kosztowne. prawo powszechnej grawitacji siła działająca na i-te ciało pochodzące od j-tego aby zasymulować słońce + 8 planet: w każdym kroku: 9 (ciał) *3 (wymiary) *2 (prędkość i położenie) =54 równań 1-szego rzędu Do wyliczenia jednego kroku +9*8/2*3=96 sił do policzenia

4 Symulacja układu słonecznego: John Adamsa, wiek XIX Przydałaby y się ę metoda: 1) wysokiej dokładności (dt*liczba kroków < czas życia pana Adamsa) 2) jeden rachunek sił na jeden krok czasowy 3) jawna (wynika z 2) Przed Adamsem: tego typu dostępne tylko metody Eulera Mimo rozwoju komputerów złożoność wielu ważnych problemów stawia badaczy w sytuacji Adamsa (często zazwyczaj praca na granicy możliwości komputera) pan Adams sprawdza prawo powszechnej grawitacji siła działająca na i-te ciało pochodzące od j-tego aby zasymulować słońce + 8 planet: w każdym kroku: 9*3*2=54 równań 1-szego rzędu +9*8/2*3=96 sił do policzenia

5 liniowe metody wielokrokowe: do podniesienia dokładności wykorzystamy znajomość historii układu (którą zapamiętujemy) dla metod jawnych: f liczona tylko raz w jednym kroku czasowym u n-k u n-2 u n-1 u n stały krok czasowy (manipulacja krokiem utrudniona!) t f n-k f n-2 f n-1 Δt f n wkażdym nowym kroku wywołujemy prawą stronę tylko w nowym punkcie korzystamy z informacji na temat przeszłości u oraz f ogólna postać k-krokowej metody wielokrokowej ( u n wyliczane z tego wzoru): m. jawna: β 0 =0 niejawna gdy β 0 0 α 0 =1,[α k 0 lub β k 0] liniowy jest związek między u l a f l, f wcale nie musi być liniowa

6 pan Adams sprawdza prawo powszechnej grawitacji... Uran zachowuje się w sposób podejrzany it ji i k h dl ł ś i h prawo grawitacji na większych odległościach odbiega od 1/r?

7 Nie można wyświetlić połączonego obrazu. Plik mógł zostać przeniesiony lub usunięty albo zmieniono jego nazwę. Sprawdź, czy łącze wskazuje poprawny plik i lokalizację. Adams, John. Couch., "Explanation of the observed irregularities in the motion of Uranus, on the hypothesis of disturbance by a more distant planet", Monthly Notices of the Royal Astronomical Society, Vol. 7, p. 149, 1843 Neptun odkrycie numeryczne fotka z Wikipedii

8 Poznane schematy, które należą do klasy liniowych wielokrokowych 1) jawny s. Eulera u n =u n-1 +f n-1 Δt u n -u n-1 = Δt f n-1 2) niejawny s. Eulera u n =u n-1 +f n Δt α 0 =1, α 1 = 1 β 0 =0, β 1 =1 α 0 =1, α 1 = 1 β 0 =1, β 1 =0 α 0 =1, α 1 = 1 β 0 =1/2, β 1 =1/2 0, 1 3) formuła ł trapezów u n =u n-1 +(f n + f n-1 )Δt/2 RK2 punktu środkowego nie podlega tej formule: f wzywane w sposób nieliniowy

9 1) zakładamy szczególną formę ogólnego wzoru (k) (wybieramy kilka niezerowych współczynników) jak wyznaczyć α, β: Np. metoda nieoznaczonych współczynników 2) wartości niezerowych współczynników wyznaczamy z rozwinięcia Taylora lub w sposób równoważny tak aby formuła była dokładna dla wielomianu jak najwyższego stopnia np. u n-2 u n-1 Δt u n t f n-1 3 swobodne współczynniki: możemy obsłużyć 3 rozwiązania = będzie dokładna dla parabol (tj. rzędu 2) u=1 gdy du/dt=f=0 α 0 +α 1 +α 2 =1+ α 1 +α 2 =0 u=t gdy f=1 Δt(n+α ( n + 1 (n-1) + α 2 (n-2) )= Δt β 1 u=t 2 gdy f=2t Δt 2 ( n 2 + α 1 (n-1) 2 + α 2 (n-2) 2 )= 2 Δt β 1 Δt n

10 u=1 gdy du/dt=f=0 1+α 1 +α 2 =0 u=t gdy gyf f=1 Δt ( n + α 1 1( (n-1) + α 2 (n-2) ))= Δt β 1 u=t 2 gdy f=2t Δt 2 ( n 2 + α 1 (n-1) 2 + α 2 (n-2) 2 )= 2 Δt β 1 Δt (n-1) URL α 1 =0 α 2 =-1 β 1 =2 u n-2 Δt u n t f n-1 metoda punktu pośredniego (leapfrog). równie prosta jak jawny Euler (p=1) ale rzędu p=2 Dla metod wielokrokowych: warunek początkowy u 0 nie wystarcza do uruchomienia schematu : tutaj potrzebne u 0 oraz f 1 f 1 można policzyć (bardzo) dokładnie innymi metodami

11 metoda nieustalonych współczynników przykład 2: metoda jawna dwukrokowa rzędu trzeciego u n-2 u n-1 u n t Δt f n-2 f n-1 w sposób jak wyżej uzyskamy:

12 metoda nieustalonych współczynników przykład 2: metoda jawna dwukrokowa rzędu trzeciego (*) Pierwsza bariera stabilności Dahlquista (ograniczenie na rząd 0-stabilnej dokładności metody wielokrokowej): Maksymalny rząd dokładności p 0-stabilnej k-krokowej krokowej liniowej formuły wielokrokowej dla metod jawnych: maksymalne p = k dla niejawnych : maksymalne p = k+1 (jeśli k nieparzyste) p= k+2 (jeśli k parzyste) schemat (*) nie może być stabilny bo jego dokładność przekracza pierwszą barierę Dahqluista

13 2k+2 współczynników do wyznaczenia? Czy można znaleźć współczynniki tak, aby rząd 2k+1? Tak, ale metoda nie będzie użyteczna (0-stabilna), Jeśli p > k (dla metod jawnych) lub >k+2 (dla metod niejawnych) Druga bariera Dahlquista: maksymalny rząd dokładności wielokrokowej metody A-stabilnej: 2 (stąd motywacja dla niejawnych metod RK)

14 metody jawne Adamsa-Bashforta powstają ze scałkowania równania różniczkowego po ostatnim kroku czasowym u n-k u n-2 u n-1 u n t Δt f n-k f n-2 f n-1 f n-3 f f n-2 f n-4 f n-1 metody Adamsa-Bashforta:: interpolujemy wielomianem f w krokach n-1,...n-k u n wyliczamy całkując wielomian interpolacyjny od t n-1 do t n t

15 jednokrokowa metoda AB metody jawne Adamsa-Bashforta f n-1 P 0 0( (t)=f n-1 f t zastąpmy funkcje podcałkową przez wielomian P 0 interpolujący f w chwili t n-1 jednokrokowa AB = jawny Euler : rzędu 1

16 Metoda Adamsa-Bashfortha k=2 f n-2 f f n-1 znamy wartości f n-2, f n-1 prowadzimy przez nie wielomian interpolacyjny, który następnie całkujemy t n-2 t n-1 t n t tu interpolujemy tu całkujemy drugi rząd dokładności (jak wzór trapezów) ale jawny!

17 Metody AB

18 AB jawne - przykład du/dt=cos(t) błąd rozwiązania dla dt= k=3,4 k= k= k= k=

19 AB: współczynniki błąd dyskretyzacji (df): wstawiamy rozwiązanie dokładne do przepisu definiującego schemat. Zamiast zera otrzymujemy błąd dyskretyzacji. C -stała błędu dyskretyzacji

20 błąd dyskretyzacji AB1=jawnego Eulera: (Euler dokładnie scałkuje funkcje liniową, pomyli się dopiero przy paraboli) Cały błąd dyskretyzacji: zależy od równania ( f ), ale: stała błędu C nie zależy od równania (f [równanie] wchodzi do pochodnej) = jest własnością metody

21 błąd dyskretyzacji AB1=jawnego Eulera: (Euler dokładnie scałkuje funkcje liniową, pomyli się dopiero przy paraboli) C najłatwiej wyznaczymy dla równania którego rozwiązaniem jest t 2 : du/dt=2t=f, a u (2) = 2 i nie zależyodpołożenia pewna chwila czasowa z zakresu ostatniego kroku C= 1/2

22 błąd dyskretyzacji schematu AB2 Cu (ξ)δt 3 C=5/12 błąd dyskretyzacji AB2 5/12 u Δt 2 C k C j

23 metody niejawne Adamsa-Moultona formuły AM f n-1 wprowadzane podobnie do AB, ale: f n-3 f n do interpolacji włączany punkt t n a wyłączamy t n-k aby utrzymać rząd wielomianu f f n-2 f n-4 ABk (czytać rzędu k: k-krokowa) t Dla zachowania tego samego Rzędu dokładności d ś rezygnujemy Z korzystania z najbardziej zamierzchłej chwili Czasowej na rzecz tn AMk (czytać rzędu k, (k-1) krokowa)

24 Metoda Adamsa-Moultona k=2 interpolujemy f w (k-1) chwiach łącznie z t n, całkujemy od t n-1 do t n f t n-1 t n t tu interpolujemy i całkujemy wzór trapezów

25 niejawne AM - współczynniki Błąd dyskretyzacji AM

26 Błąd dyskretyzacji AM a AB niejawne: bardziej dokładne: AB wolno maleje, AM - szybko tutaj: błąd dyskretyzacji AB4 około 18 razy większy niż AM4

27 wielokrokowe metody niejawne: z reguły bardziej stabilne i dokładniejsze niż jawne tego samego rzędu dokładności sposób rozwiązywania równań: 1) iteracja funkcjonalna tylko ta część podlega iteracji pamiętamy, że dla wstecznego Eulera metoda mało przydatna (słaba zbieżność) dla metod wielokrokowych (trapezów np.) zakres zbieżności był nieco lepszy

28 2) metoda Newtona dla niejawnych metod wielokrokowych szukamy zera: nie zmienia się w iteracjach po μ

29 wielokrokowe metody niejawne: metody predyktor korektor iterację (funkcjonalną czy Newtona) można zacząć od albo (lepiej) od wartości danej przez schemat jawny. Sekwencja: jedno wywołanie jawnego / schemat niejawny (stosowany raz, lub więcej) = metoda predyktor korektor np. AB3/ AM4 możliwe różne strategie: niejawny korektor można używać aż do samouzgodnienia (wtedy własności np. stabilności = wyłącznie korektora) lub skończoną liczbę razy (własności hybrydowe) przykład z iteracją funkcjonalną ą dla podkreślenia przydatności PK: poznane wcześniej równanie nieliniowe u =u(1-u), u(0)=0.8, 3 pierwsze wartości u i f = analitycznie ΑΜ4, Δt=1, liczymy u(3δt) na starcie u(3δt):=u(2δt) na starcie u(3δt):=ab uwaga: z predyktor/korektor mieliśmy do czynienia przy niejawnych schematach RK było: predyktor niejawny, korektor jawny dla metod wielokrokowych jest odwrotnie, predyktor jest jawny, a korektor nie

30 AB4, AM4, RK4 porównanie dokładności (kroki startowe podajemy analityczne) 6 dokładne 0 Δt= u 4 2 t jawny s. Eulera (zadajemy tylko warunek początkowy) AB4 znaczy AB rzędu 4, 4-krokowa zadajemy f 0,f 1,f 2,f 3 oraz u 3 aby wyliczyć u 4 (problem ze startem) AM4 = AM rzędu 4, 3-krokowa t AM4 AB4 Przepis na jeden krok można rozwiązać analitycznie, bo w naszym przykładzie f to liniowa fcja u b. glob. t dla t=2, błędy: 2.13e-4, -2.11e-3

31 AB4, AM4, RK4 porównanie dokładności AM4 RK4 dla t=2, błędy: 2.13e-4, -2.11e-3, 1.087e-4 AB4 RK4 = nie ma problemu z rozwiązaniem jak dla AM4 = nie ma problemu ze startem jak dla AM4 i AB4 = kosztuje : 4 wywołania f (dla AM4 może być różnie zależnie od zbieżności iteracji) AM4 nieco szerszy zakres bezwzględnej stabilności niż RK4

32 Thersten Finite Differences and spectral methods for ordinary and partial differential equations: podobne do Adamsa: interpolujemy f, liczymy całkę z f od t(n-2) do t(n)

33 metody różnic wstecznych: najlepsze y y j p własności stabilności bezwzględnej

użyteczne, gdy rachunek nie wymaga zmiany kroku całkowania a wykonanie każdego kroku jest kosztowne

użyteczne, gdy rachunek nie wymaga zmiany kroku całkowania a wykonanie każdego kroku jest kosztowne Liniowe metody wielokrokowe starsze niż RK o 50 lat użyteczne, gdy rachunek nie wymaga zmiany kroku całkowania a wykonanie każdego kroku jest kosztowne (wysoka dokładność, d przy małej ł jliczbie wezwań

Bardziej szczegółowo

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego

Bardziej szczegółowo

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje

Bardziej szczegółowo

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)] jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu

Bardziej szczegółowo

t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone

t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany yróżnymi skalami czasowymi. 2. Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3. Metody jawne się

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych

Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Równania różniczkowe zwyczajne

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku

Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Cel: Dla zadanej tolerancji e wybrać minimalną liczbę węzłów, wystarczającą do utrzymania globalnego błedu w ramach tolerancji. Błąd globalny trudny

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Postawienie zadania i podstawowe idee jego rozwiązania Metody samostartujące (Eulera, Rungego-Kutty) Metody niesamostartujące

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH. INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 7. Równania nieliniowe (non-linear equations) Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Dawid Prokopek

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223 Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe. P. F. Góra Komputerowa analiza zagadnień różniczkowych 6. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Liniowe metody wielokrokowe Często przywoływana wada metod Rungego-Kutty jest konieczność

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń

Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń PJWSTK/KMKT-07082006 Laboratorium II: Modelowanie procesów fizycznych Katedra Metod Komputerowych Techniki Polsko Japońska Wyższa Szkoła Technik Komputerowych I. KINETYKA Kinetyka zajmuje się ruchem ciał

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 8. Metody wielokrokowe Metody Verleta P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Motywacja Metody wielokrokowe

Bardziej szczegółowo

inżynierskie metody numeryczne cel przedmiotu:

inżynierskie metody numeryczne cel przedmiotu: inżynierskie metody numeryczne cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego w zagadnieniach techniki (inżynierii) i nauki symulacje obliczeniowe:

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr

Bardziej szczegółowo

inżynierskie metody numeryczne D10/325,

inżynierskie metody numeryczne D10/325, inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/imn11 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego

Bardziej szczegółowo

Wyprowadzenie wzoru na krzywą łańcuchową

Wyprowadzenie wzoru na krzywą łańcuchową Wyprowadzenie wzoru na krzywą łańcuchową Daniel Pęcak 16 sierpnia 9 1 Wstęp Być może zastanawiałeś się kiedyś drogi czytelniku nad kształtem, jaki kształt przyjmuje zwisający swobodnie łańcuch lub sznur

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30

inżynierskie metody numeryczne D10/325,  Konsultacje 8:00 9:30 inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk

Bardziej szczegółowo

Zwięzły kurs analizy numerycznej

Zwięzły kurs analizy numerycznej Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Interpolacja i modelowanie krzywych 2D i 3D

Interpolacja i modelowanie krzywych 2D i 3D Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl

Bardziej szczegółowo

Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset

Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset Ćwiczenie 4 Modelowanie procesu nagrzewania toru prądowego narzędziami Simulinka w Matlabie Wprowadzenie Celem ćwiczenia jest modelowanie procesu nagrzewania toru prądowego z wykorzystaniem różnorodnych

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 8. Wyznaczanie pierwiastków wielomianów Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena Nowak

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

5. Twierdzenie Weierstrassa

5. Twierdzenie Weierstrassa Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Metody numeryczne równań różniczkowych zwyczajnych

Metody numeryczne równań różniczkowych zwyczajnych Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Wyznaczanie miejsc zerowych funkcji

Wyznaczanie miejsc zerowych funkcji Wyznaczanie miejsc zerowych funkcji Piotr Modliński 6 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Metoda diagramowa Ręczne wyprowadzanie równan wiaż acych współczynniki

Bardziej szczegółowo

inżynierskie metody numeryczne D11/106, konsultacje: piątki 8:30-10:30

inżynierskie metody numeryczne D11/106, konsultacje: piątki 8:30-10:30 inżynierskie metody numeryczne D11/106, bszafran@agh.edu.pl konsultacje: piątki 8:30-10:30 http://galaxy.uci.agh.edu.pl/~bszafran/imn11 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania

Bardziej szczegółowo

ciało w potencjale radialnym schemat Eulera orbity kontrola kroku czasowego

ciało w potencjale radialnym schemat Eulera orbity kontrola kroku czasowego Wykład pokazuj acy, że wybór stałego nie zawsze jest dobrym pomysłem. Jak napisać program, który będzie sam sobie dobierał krok czasowy na podstawie narzuconej przez nas tolerancji dokładności orbita komety

Bardziej szczegółowo

Równania różniczkowe zwyczajne: problem brzegowy [1D]

Równania różniczkowe zwyczajne: problem brzegowy [1D] Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30

inżynierskie metody numeryczne D10/325,   Konsultacje 8:00 9:30 inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym

Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym α=vdt/dx upwind: centralny: stabilny, stabilny bezwzględnie stabilny, ale

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Zastosowania pochodnych

Zastosowania pochodnych Zastosowania pochodnych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 SZACOWANIE NIEPEWNOŚCI POMIAROWEJ Przykład: objętość kuli Kulka z łożyska tocznego ma średnicę 2,3 mm, co oznacza, że objętość

Bardziej szczegółowo

region bezwzględnej stabilności dla ogólnej niejawnej metody RK R(z) 1 może być nieograniczony niejawna 1 stopniowa

region bezwzględnej stabilności dla ogólnej niejawnej metody RK R(z) 1 może być nieograniczony niejawna 1 stopniowa region bezwzględnej stabilności dla ogólnej niejawnej metody RK u =λu u=λu, z=λδt dla metod niejawnych: ij nie można ż obciąć bićrozwinięcia i i Taylora, bo A pełnał współczynnik wzmocnienia nie jest wielomianem,

Bardziej szczegółowo

Metody rozwiązywania równań nieliniowych

Metody rozwiązywania równań nieliniowych Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński. Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo