Technika regulacji automatycznej
|
|
- Anna Szczepańska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32
2 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego rzędu Pasmo przenoszenia Stabilność w dziedzinie częstotliwości Układ regulacji ze sprzężeniem zwrotnym 2 z 32
3 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego rzędu Pasmo przenoszenia Stabilność w dziedzinie częstotliwości Układ regulacji ze sprzężeniem zwrotnym 2 z 32
4 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego rzędu Pasmo przenoszenia Stabilność w dziedzinie częstotliwości Układ regulacji ze sprzężeniem zwrotnym 2 z 32
5 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego rzędu Pasmo przenoszenia Stabilność w dziedzinie częstotliwości Układ regulacji ze sprzężeniem zwrotnym 2 z 32
6 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego rzędu Pasmo przenoszenia Stabilność w dziedzinie częstotliwości Układ regulacji ze sprzężeniem zwrotnym 2 z 32
7 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego rzędu Pasmo przenoszenia Stabilność w dziedzinie częstotliwości Układ regulacji ze sprzężeniem zwrotnym 2 z 32
8 Projektowanie regulatorów w dziedzinie częstotliwości Metody projektowania w dziedzinie częstotliwości mają wiele zalet: Stabilność i wymagania jakościowe są prezentowane na tym samym wykresie. Możemy używać rzeczywistych pomiarów (FRF) zamiast modelu w formie transmitancji. Projektowanie jest niezależne od rzędu układu. Regulatory dla układów z opóżnieniami też możemy projektować bez większych trudności. Metody graficzne (analiza i synteza z użyciem odpowiednich diagramów) jest relatywnie łatwa. 3 z 32
9 Układ pierwszego rzędu Własności: Jeden biegun w ( a) G(s) = Pasmo przenoszenia ω BW = a Odpowiedź skokowa Y (s) = 1 s a s + a a s + a = 1 s 1 s + a y(t) = (1 e at )u(t) 4 z 32
10 Układ pierwszego rzędu Odpowiedź częstotliwościowa i skokowa Przykładowa transmitancja G(s) = 2 s + 2 Bode Diagram Step Response 2.9 Magnitude (db) ω BW =2[rad/sec] Amplitude T R =.5 sec Phase (deg) Frequency (rad/sec) Time (sec) 5 z 32
11 Układ drugiego rzędu ω 2 n G(s) = s 2 + 2ζ ω n s + ωn 2 gdzie ζ - współ. tłumienia względnego ω n - pulsacja drgań własnych (nietłumionych) lokalizacja biegunów s 1,2 = ζ ω n ± jω n 1 ζ 2 dla ζ > 1 oba bieguny są rzeczywiste dla ζ = 1 oba bieguny są identyczne i rzeczywiste dla < ζ < 1 bieguny są zespolone i sprzężone. 6 z 32
12 Układ drugiego rzędu Odpowiedź częstotliwościowa Przykładowa transmitancja G(s) = 1 s 2 +.6s + 1 Bode Diagram 1 Magnitude (db) 1 2 ω BW M R 3 45 Phase (deg) z Frequency (rad/sec)
13 Układ drugiego rzędu Własności układu pulsacja rezonansowa (dla ζ 1 2 ) Moduł rezonansowy (dla ζ 1 2 ) pasmo przenoszenia ω R = ω n 1 2ζ 2 1 M R = 2ζ 1 ζ 2 ω BW = ω n (1 2ζ 2 ) + 4ζ 4 4ζ Dla < ζ < 1 to.64ω n < ω BW < 1.55ω n. Dla ζ = 1 2 to ω BW = ω n. 8 z 32
14 Układ drugiego rzędu Odpowiedź skokowa Przykładowa transmitancja G(s) = 1 s 2 +.6s Mp +/- 5% M P - wartość (moduł) przeregulowania.8.6 POS = 1[(M P y( ))/y( )] Tr Tp Ts 9 z 32 T P - czas max. przeregulowania T S - czas regulacji T R - czas narastania
15 Układ drugiego rzędu Odpowiedź skokowa (dziedzina częstotliwości) Y (s) = 1 s G(s) = 1 s Odpowiedź skokowa (dziedzina czasu) y(t) = 1 s + 2ζ ω n (s + ζ ω n ) 2 + ω 2 n(1 ζ 2 ) e t/τ 1 ζ 2 cos(ω dt ϕ d ), t > gdzie σ = ζ ω n - tłumienie względne τ = 1/ sigma - stała czasowa ω d = ω n 1 ζ 2 - pulsacja tłumiona ϕ = sin 1 ζ 1 z 32
16 Pasmo przenoszenia Pasmem przenoszenia (ang. bandwidth) - częstotliwość (ω BW ) przy której wzmocnienie układu zamkniętego = 3dB. Jednak korzystając z metod odpowiedzi częstotliwościowej oczekujemy określenia odpowiedzi układu zamkniętego na podstawie odpowiedzi układu otwartego. Na podstawie odpowiedzi układu 2-ego rzędu, możemy przyjąć, iż pasmo przenoszenia odpowiada częstotliwości dla której wzmocnienie układu otwartego jest pomiędzy 6 i 7.5dB (przyjmując, że przesuniecie fazowe dla tego wzmocnienia jest pomiędzy 135 o i 225 o ). 11 z 32
17 Pasmo przenoszenia Przykład Transmitancja układu zamkniętego G cl = 1 s 2 +.5s Bode Diagram Magnitude (db) Phase (deg) ω BW =1.4[rad/sec] 12 z Frequency (rad/sec)
18 Pasmo przenoszenia Przykład dla ω < ω BW dla ω > ω BW 1.5 Wyjscie 1.5 Wyjscie Wymuszenie Wymuszenie z 32
19 Pasmo przenoszenia Relacje ze współczynikiem tłumienia (ζ ) i czasem ustalania(t S ) ω BW = ω n (1 2ζ 2 ) + 4ζ 4 4 ζ ω n = 4 T s ζ ω BW *T S z ζ
20 Pasmo przenoszenia Relacje ze współczynikiem tłumienia (ζ ) i czasem max. przeregulowania (T P ) ω BW = ω n (1 2ζ 2 ) + 4ζ 4 4 ζ π ω n = T p 1 ζ ω BW *T P z ζ
21 Układ drugiego rzędu Wpływ zmian położenia biegunów Dla danej transmitancji ω 2 n G(s) = s 2 + 2ζ ω n s + ωn 2 = ω 2 d + σ 2 s 2 + 2σs + ω 2 d + σ 2 X +j d s 1,2 = ζ ω n ± jω n 1 ζ 2 X n -j d θ = cos 1 ζ ζ = cosθ 16 z 32
22 Układ drugiego rzędu Wpływ zmian σ ω d = 1, σ = {.5,1,1.5} Step Response Singular Values 1.4 σ= σ=1. σ= σ=.5 σ=1. 1 σ=1.5 Amplitude Singular Values (db) Time (sec) Frequency (rad/sec) 17 z 32
23 Układ drugiego rzędu Wpływ zmian ω d σ = 1, ω d = {.5,2.5,4.5} Step Response Singular Values 1.5 ω d =.5 ω d =2.5 ω d =.5 ω d =2.5 ω d =4.5 5 ω d =4.5 Amplitude 1 Singular Values (db) Time (sec) Frequency (rad/sec) 18 z 32
24 Układ drugiego rzędu Wpływ zmian ζ ω n = 2, θ = {3,45,6} Step Response 1 Singular Values θ=3 Amplitude θ=3 θ=45 θ=6 Singular Values (db) θ=45 θ= Time (sec) 14 Frequency (rad/sec) 1 19 z 32
25 Układ drugiego rzędu Wpływ zmian ω n ζ = 1 2, ω n = { 2 2, 2,5 2} Step Response Singular Values ω n =.77 ω n =1.41 ω n =7 Amplitude.8.6 ω n =.77 ω n =1.41 ω n =7 Singular Values (db) Time (sec) Frequency (rad/sec) 2 z 32
26 Stabilność w dziedzinie częstotliwości Problem Czy badając transmitancję w otwartej pętli L(s) = K(s)G(s) możemy ustalić stabilność układu zamkniętego? G cl = K(s)G(s) 1 + K(s)G(s) Uwagi: Łatwo rozwiązać powyższy problem korzystając z linii pierwiastkowych Jak znaleźć warunek w dziedzinie częstotliwości odpowiadający ulokowaniu wszystkich biegunów w lewej półpłaszczyźnie zespolonej? 21 z 32
27 Zapas wzmocnienia i fazy Zapas wzmocnienia Zmiana wzmocnienia w układzie otwartym (K(s)G(s)) potrzebna aby układ zamknięty był niestabilny. Układy z większym zapasem wzmocnienia są bardziej odporne (ang. robust) na zmiany parametrów układu zanim układ zamknięty będzie niestabilny. 22 z 32
28 Zapas wzmocnienia i fazy Zapas fazy Zmiana fazy w układzie otwartym (K(s)G(s)) potrzebna aby układ zamknięty był niestabilny. Zapas fazy określa tolerancję układu na opóźnienia. Opóźnienia większe niż 18/ω pc (ω pc - częstotliwość przy którym przesunięcie fazowe = 18 o ) w pętli powodują niestabilność układu zamkniętego. 23 z 32
29 Zapas wzmocnienia i fazy Przykład K(s) = 5,G(s) = 1 s 3 + 9s 2 + 3s Bode Diagram Gm = 13.3 db (at 5.48 rad/sec), Pm = 11 deg (at 1.85 rad/sec) Magnitude (db) Phase (deg) z Frequency (rad/sec)
30 Zapas wzmocnienia i fazy Zmieniając wzmocnienie układu (K(s) = 5(1 )) nie musimy kreślić nowego wykresu Bode go aby odczytać zapas fazy. Wystarczy na utworzonym już wykresie sprawdzić zapas fazy dla 4dB (4dB odpowiada wzmocnieniu 1 razy). 5 Bode Diagram Gm = 26.7 db (at 5.48 rad/sec), Pm = 59.6 deg (at 16.9 rad/sec) Magnitude (db) 5 Phase (deg) Frequency (rad/sec) 25 z 32
31 Wskaźniki jakościowe Określanie wskaźników jakościowych układu zamkniętego: musimy zapewnić stabilność układu otwartego jeśli będziemy używać diagramów Bode go. sprawdzamy czy ω gc < ω pc ) aby stwierdzić czy układ zamknięty będzie stabilny. dla układu 2-ego rzędu, współczynnik tłumienia (układu zamkniętego) jest w przybliżeniu równa PM/1 (jeśli PM= 6 o. dla układu 2-ego rzędu, istnieją zależności pomiędzy współczynikiem tłumienia, pasmem przenoszenia i czasem ustalania. w przybliżeniu możemy przyjąć że pasmo przenoszenia będzie równe częstotliwości drgań własnych. 26 z 32
32 Układ regulacji ze sprzężeniem zwrotnym d r - K u G z y n Definicje sygnałów r - sygnał referencyjny d - zakłócenia n - szum czujników z - regulowane wyjście y - mierzone wyjście Problem: Uzyskanie najmniejszego błędu regulacji (r z) 27 z 32
33 Układ regulacji ze sprzężeniem zwrotnym Wyjście układu Z(s) = K(s)G(s) 1+K(s)G(s) R(s)+ 1 1+K(s)G(s) D(s) K(s)G(s) 1+K(s)G(s) N(s) Definiując bład regulacji e = r z otrzymujemy oraz E(s) = 1 1+K(s)G(s) R(s) 1 1+K(s)G(s) D(s) + K(s)G(s) 1+K(s)G(s) N(s) U(s) = K(s) (R(s) D(s) N(s)) 1+K(s)G(s) 28 z 32
34 Ograniczenia sterowania Można pokazać, że gdzie e = r z = S(r d) + Tn S(s) = (1+G(s)K(s)) 1 ; T (s) = 1 S(s) = (1+G(s)K(s)) 1 G(s)K(s) Głowne cele sterowania Dobre śledzenie sygnału referencyjnego (dla niskich częstotliwości < ω BW ) G(jω)K(jω) 1 S(jω) 1 or T (jw) 1 Dobre tłumienie zakłóceń (dla wysokich częstotliwości) 29 z 32 G(jω)K(jω) 1 T (jω) 1
35 Cele i ograniczenia regulacji (sterowania) Cel regulacji Zaprojektować regulator K tak aby błąd regulacji pozostawał mały. Oznacza to, że będziemy dążyć aby S i T były małe w tych zakresach częstotliwości gdzie spektrum sygnałów r i n są małe. Ograniczenia S +T = 1 (błąd e nie może być mały dla wszystkich czestotliwości) log S(jω) dω = - jakość sterowania (ang. performance) vs. odporność (ang. robustness) 3 z 32
36 Cele regulacji I Sygnał z musi śledzić r (ang. tracking). II Odporność na zmiany parametrów układu. III Tłumić wpływ zakłóceń (oraz niemodelowanej dynamiki) IV Tłumić wpływ szumu pomiarowego n open loop (L) I II III,IV Magnitude (db) c omplementary sensitivity (T) -2-4 s ensitivity (S) 31 z Frequency (rad/sec)
37 Cele regulacji Imag M s = S(jω) d 1/GM d =1 1 M s PM ζ =2sin 1 ( 1 M s ) -1 1/M s s cg Real Czyli M s GM 1 d = M s 1 PM cp L(j ) M s < 2 GM > 2 i PM > 3 o 32 z 32
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający
Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Automatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Projektowanie sterowników Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 4 stycznia 212 O czym będziemy mówili? 1 2 3 rlocus Wyznaczanie trajektorii
Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Techniki regulacji automatycznej
Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 6. Badanie
( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
TEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW
TEORIA STEROWANIA I, w 5 dr inż. Adam Woźniak ZTMiR MEiL PW Układy LTI- SISO Stacjonarne, przyczynowe liniowe układy z jednym wyjściem i jednym wejściem najczęściej modeluje się przy pomocy właściwej transmitancji
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy
Kompensator PID G c s =G cm sω z ω L s s ω p G cm =G c0 aby nie zmienić częstotliwości odcięcia f L f c /0=500 Hz aby nie zmniejszyć zapasu fazy Łukasz Starzak, Sterowanie przekształtników elektronicznych,
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 dr inż. Marcin Ciołek Katedra Systemów Automatyki Wydział ETI, Politechnika Gdańska Języki Modelowania i Symulacji dr inż. Marcin Ciołek
analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Analiza ustalonego punktu pracy dla układu zamkniętego
Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()
4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1
Korekcja układów regulacji
Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Transmitancja modelu, procesu i regulatora wykorzystana w badaniach. Rzeczywisty regulator PID. Transmitancja regulatora: = sti. Transmitancja modelu:
1. Cel projektu. Zasymulować odpowiedź skokową procesu P(s). Na podstawie tej odpowiedzi skokowej, określić τ oraz T i wyznaczyć parametry modelu M(s), którego rodzaj jest podany. Model ten będzie wykorzystany
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Inżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Automatyka i robotyka
Automatyka i robotyka Wykład 1 - Wprowadzenie do automatyki Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu Podstawowe informacje Wprowadzenie
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Detekcja synchroniczna i PLL
Detekcja synchroniczna i PLL kład mnożący -detektor azy! VCC VCC wy, średnie Detekcja synchroniczna Gdy na wejścia podamy przebiegi o różnych częstotliwościach cos(ω i cos(ω t+) oraz ma dużą amplitudę
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Modelowanie wybranych. urządzeń mechatronicznych
Modelowanie wybranych elementów torów pomiarowych urządzeń mechatronicznych Pomiary - element sterowania napędem mechatronicznym Układ napędowy - Zintegrowane czujniki Zewnetrzne sygnały sterujące Sprzężenia
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego
4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Sterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
Sterowanie napędów maszyn i robotów
Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Wzmacniacze operacyjne
Wzmacniacze operacyjne Wrocław 2015 Wprowadzenie jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). Wzmacniacz ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne.
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera.
1. Celem projektu jest zaprojektowanie układu regulacji wykorzystującego regulator PI lub regulator PID, dla określonego obiektu składającego się z iloczynu dwóch transmitancji G 1 (s) i G 2 (s). Następnym
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane
Wzmacniacze operacyjne
e operacyjne Wrocław 2018 Wprowadzenie operacyjny jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne. N P E
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan
Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń
Inżynieria Systemów Dynamicznych (5)
Inżynieria Systemów Dynamicznych (5) Dokładność Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 DOKŁAD 2 Uchyb Podstawowy strukturalny
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Podstawy środowiska Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Automatyki i Robotyki Podstawy środowiska Matlab Poniżej przedstawione jest użycie podstawowych poleceń w środowisku
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Kryterium miejsca geometrycznego pierwiastków
7.5.3. Kryterium miejsca geometrycznego pierwiastków Wprowadzenie Miejsce geometryczne pierwiastków równania charakterystycznego układu zamkniętego (mgp) umożliwia między innymi wyznaczenie wymaganego
1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,
Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy
1. Regulatory ciągłe liniowe.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207
Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA
WFiIS LABORATORIM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Przeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin
Ćwiczenie - 7. Filtry
LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy
Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...
Ujemne sprzężenie zwrotne, WO przypomnienie
Ujemne sprzężenie zwrotne, WO przypomnienie Stabilna praca układu. Przykład: wzmacniacz nie odw. fazy: v o P kt pracy =( v 1+ R ) 2 0 R 1 w.12, p.1 v v o = A OL ( v ) ( ) v v o ( ) Jeśli z jakiegoś powodu
Podstawowe czªony dynamiczne. Odpowied¹ impulsowa. odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach pocz tkowych, { dla t = 0
CHARAKTERYSTYKI W DZIEDZINIE CZASU I CZ STOTLIWO CI Podstawowe czªony dynamiczne Opis w dziedzinie czasu: Odpowied¹ impulsowa g(t) = L 1 [G(s)] odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach
WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne