Macierz A nazywamy macierzą systemu, a B macierzą wejścia.
|
|
- Henryk Kujawa
- 9 lat temu
- Przeglądów:
Transkrypt
1 Dwiczenia 3 Automatyka i robotyka Równaniem stanu. Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Równaniem wyjścia. Do opisu układu możemy użyd jednocześnie równania stanu i równania wyjścia jest to opis układu w przestrzeni stanów. Operacje przydatne do ćwiczeo: SS ( state-space ) układ opisany za pomocą równao stanu. SYS = SS(A,B,C,D) tworzy układ ciągły. SYS = SS(A,B,C,D,T) tworzy układ dyskretny z czasem próbkowania T. INITIAL wyznacza odpowiedź układu na zadane warunki początkowe. INITIAL(SYS,X0) wywołanie to kreśli odpowiedź układu na zadany warunek początkowy X0, odpowiedź jest opisana przez następujące równanie: Układ ciągły: Układ dyskretny: x[k+1] = A x[k], y[k] = C x[k], x[0] = x0 Przedział czasu i liczba punktów są dobierane automatycznie. INITIAL(SYS,X0,TFINAL) wywołanie to symuluje odpowiedź dla podanego czasu, dla układu dyskretnego TFINAL określa liczbę kroków. INITIAL(SYS,X0,T) wywołanie to wektor T określa czas symulacji odpowiedzi, dla układu dyskretnego T ma postad Ti:Ts:Tf gdzie Ts określa czas próbkowania, dla układu ciągłego T ma postad Ti:dt:Tf gdzie dt określa odstęp między kolejnym próbkowaniem. INITIAL(SYS1,SYS2,...,X0,T) wywołanie to kreśli odpowiedź impulsową dla wielu układów na jednym wykresie z opcjonalnie użytym wektorem T, można też określid kolor oraz styl linii dla każdego z układów np. initial(sys1,'r',sys2,'y--',sys3,'gx').
2 *Y,T,X+ = INITIAL(SYS,X0,...) wywołanie to dla układu przestrzeni stanu zwraca również wektor stanu X z kolejnych chwil symulacji. STEP wyznacza odpowiedź układu na skok jednostkowy. STEP(SYS) wywołanie to kreśli odpowiedź układu na skok jednostkowy podany na wejście, przedział czasu i liczba punktów dobierane są automatycznie. STEP(SYS,TFINAL) wywołanie to symuluje odpowiedź skokową dla zadanego czasu TFINAL, natomiast dla układu dyskretnego bez ustalonego czasu próbkowania TFINAL jest interpretowany jako liczba próbkowao. STEP(SYS,T) wywołanie to wektor T określa czas symulacji odpowiedzi skokowej,dla układu dyskretnego T ma postad Ti:Ts:Tf gdzie Ts określa czas próbkowania, dla układu ciągłego T ma postad Ti:dt:Tf gdzie dt jest czasem próbkowania z dyskretnej aproksymacji na układ ciągły. STEP(SYS1,SYS2,...,T) wywołanie to kreśli odpowiedź skokową dla wielu układów na jednym wykresie z opcjonalnie użytym wektorem T, można też określid kolor oraz styl linii dla każdego z układów np. (sys1,'r',sys2,'y--',sys3,'gx'). *Y,T+ = STEP(SYS,...) wywołanie to zwraca wyniki symulacji w postaci wektora odpowiedzi skokowej Y oraz wektora czasu trwania symulacji T. *Y,T,X+ = STEP(SYS,...) wywołanie to dla układu przestrzeni stanu zwraca również wektor stanu X z kolejnych chwil symulacji. IMPULSE wyznacza odpowiedź układu na impuls jednostkowy. IMPULSE(SYS) wywołanie to kreśli odpowiedź układu na impuls jednostkowy podany na wejście, przedział czasu i liczba punktów dobierane są automatycznie. IMPULSE(SYS,TFINAL) wywołanie to symuluje odpowiedź impulsową dla zadanego czasu TFINAL, natomiast dla układu dyskretnego bez ustalonego czasu próbkowania TFINAL jest interpretowany jako liczba próbkowao. IMPULSE(SYS,T) wywołanie to wektor T określa czas symulacji odpowiedzi impulsowej, dla układu dyskretnego T ma postad Ti:Ts:Tf gdzie Ts określa czas próbkowania, dla układu ciągłego T ma postad Ti:dt:Tf gdzie dt jest czasem próbkowania z dyskretnej aproksymacji na układ ciągły. IMPULSE(SYS1,SYS2,...,T) wywołanie to kreśli odpowiedź impulsową dla wielu układów na jednym wykresie z opcjonalnie użytym wektorem T, można też określid kolor oraz styl linii dla każdego z układów np. (sys1,'r',sys2,'y--',sys3,'gx').
3 [Y,T] = IMPULSE(SYS,T) wywołanie to zwraca wyniki symulacji w postaci wektora odpowiedzi skokowej Y oraz wektora czasu trwania symulacji T. *Y,T,X+ = IMPULSE(SYS,...) wywołanie to dla układu przestrzeni stanu zwraca również wektor stanu X z kolejnych chwil symulacji. LTIVIEW udostępnia interakcyjny graficzny interfejs użytkownika dla porównao czasowych i częstotliwościowych odpowiedzi układów. LTIVIEW(PLOTTYPE) wywołanie to generuje przypadkowy układ dla którego kreśli odpowiedź. PLOTTYPE określa rodzaj odpowiedzi. W pole PLOTTYPE można wstawid: 1) 'step 2) 'impulse' 3) 'bode' 4) 'nyquist' 5) 'nichols' 6) 'sigma' 7) 'lsim' 8) 'initial' LTIVIEW(PLOTTYPE,SYS) wywołanie to kreśli zadany rodzaj odpowiedzi dla zadanego układu. LTIVIEW(PLOTTYPE,SYS1,SYS2,...SYSN) wywołanie to kreśli odpowiedzi wielu układów na jednym wykresie. LSIM symuluje odpowiedź czasową układu na zadany sygnał wejściowy. LSIM(SYS,U,T) wywołanie to kreśli odpowiedź czasową układu na sygnał wejściowy określony przez U i T przy zerowych warunkach początkowych, parametr U powinien zawierad wierszami wektory sterowao dla kolejnych chwil czasu określonych w wektorze T, stąd liczba wierszy macierzy U musi byd równa liczbie elementów wektora czasu T np. T = 0:0.01:5; U = cos(t); lsim(sys,u,t) symuluje odpowiedź układu na sygnał wejściowy U przez 5 sekund. LSIM(SYS,U,T,X0) wywołanie to dla układu opisanego równaniami stanu można określid warunki początkowe X0. LSIM(SYS1,SYS2,...,U,T,X0) wywołanie to symuluje odpowiedź kilku układów na jednym wykresie przy czym warunki początkowe mogą ale nie muszą byd określone, każdemu układowi można przypisad odpowiedni kolor i rodzaj linii np. lsim(sys1,'r',sys2,'y--',sys3,'gx',u,t).
4 *Y,T+ = LSIM(SYS,U,...) wywołanie to zapamiętuje przebieg symulacji zapisując przebieg wyjścia Y dla danych chwil czasu zapisanych w wektorze T, przy czym macierz Y ma tyle samo wierszy co liczba elementów wektora T oraz tyle kolumn ile jest wyjśd układu. *Y,T,X+ = LSIM(SYS,U,...) wywołanie to dla układu opisanego równaniami stanu zwraca też macierz stanów X, która ma tyle rzędów co liczba elementów wektora T i tyle kolumn ile jest stanów układu. GENSIG tworzy sygnały wejściowe dla LSIM. *U,T+ = GENSIG(TYPE,TAU) wywołanie to tworzy skalarny sygnał U z pola TYPE o okresie TAU. Generowane sygnały mogą byd funkcjami typu: TYPE = 'sin' --- sinusoidalna TYPE = 'square' --- prostokątna TYPE = 'pulse' --- okresowo-impulsowa GENSIG zwraca wektor T z czasem próbkowania i wektor U z wartościami sygnału dla tych próbkowao, wszystkie generowane sygnały mają amplitudę równą jeden. *U,T+ = GENSIG(TYPE,TAU,TF,TS) wywołanie to dodatkowo można określid długośd trwania sygnału TF oraz czas próbkowania TS. Zadania 1. Wyznacz charakterystykę skokową, impulsową układu Do narysowania charakterystyki skokowej wykorzystaj funkcję STEP, a impulsowej IMPULSE. Do umieszczenia wykresów na jednym obrazku można użyd funkcji subplot. 2. Zbuduj losowy model składający się z : a. 4 zmiennych stanu, 3 wymuszeo oraz 1 wyjściu b. 3 zmiennych stanu, 2 wymuszeo oraz 2 wyjśd. Dla każdego modelu narysuj charakterystyki skokową oraz impulsową. Zaobserwuj wygląd wykresów, zastanów się dlaczego tyle ich jest.
5 3. Zbudowad model jak w dwiczeniu 1 zbadad odpowiedź na wymuszenia wykorzystując matlabową funkcję LTIVIEW. 4. Zbudowad model jak w dwiczeniu 1 narysowad odpowiedź modelu na sinusoidalne wymuszenie U określone w chwilach T. 5. Wyznacz przebieg odpowiedzi układu o wielu wejściach i wielu wyjściach na wymuszenie sinusoidalne oraz wymuszenie zmieniające się skokowo. Układ dyskretny opisany jest modelem Został poddany działaniu dyskretnego wymuszenie sinusoidalnego o okresie Pi w wejściu u1 oraz wymuszenia zmieniającego się skokowo na wejściu u2. Okres próbkowania wynosi 0,1s. Do utworzenia odpowiednich wymuszeo użyj funkcji gensig 6. Wyznacz przebieg odpowiedzi układu o wielu wejściach i wielu wyjściach, na bazie dowolnego modelu o 4 zmiennych stanu, 3 wymuszeniach oraz 2 wyjściach, wykorzystując funkcję gensig podaj na wejście u1 sygnał sinusoidalny o okresie Pi, u2 prostokątny o okresie pi, u3 sinusoidalny o okresie 3/2Pi.
Sterowaniem nazywamy celowe oddziaływanie na przebieg procesów. Można wyróżnid ręczne oraz automatyczne.
Dwiczenia 2 Automatyka i robotyka Wstęp Podstawowe pojęcia: Sterowaniem nazywamy celowe oddziaływanie na przebieg procesów. Można wyróżnid ręczne oraz automatyczne. Układ wyodrębniony ze środowiska układ
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Podstawy środowiska Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Automatyki i Robotyki Podstawy środowiska Matlab Poniżej przedstawione jest użycie podstawowych poleceń w środowisku
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB wprowadzenie do biblioteki Control System Toolbox Materiały pomocnicze do ćwiczeń
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw
Właściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
Informatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.
1 DWICZENIE 2 PRZENOSZENIE IMPULSÓW PRZEZ CZWÓRNIKI LINIOWE 2.1. Cel dwiczenia Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.
Algorytmy sztucznej inteligencji
Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Analityczne metody detekcji uszkodzeń
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
1. Podstawowe pojęcia
1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych
7. Szybka transformata Fouriera fft
7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 2. REPREZENTACJA
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
1. Transformata Laplace a przypomnienie
Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych
Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan
Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
ćw. Symulacja układów cyfrowych Data wykonania: Data oddania: Program SPICE - Symulacja działania układów liczników 7490 i 7493
Laboratorium Komputerowe Wspomaganie Projektowania Układów Elektronicznych Jarosław Gliwiński, Paweł Urbanek 1. Cel ćwiczenia ćw. Symulacja układów cyfrowych Data wykonania: 16.05.08 Data oddania: 30.05.08
Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 dr inż. Marcin Ciołek Katedra Systemów Automatyki Wydział ETI, Politechnika Gdańska Języki Modelowania i Symulacji dr inż. Marcin Ciołek
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane
Obiektowy PHP. Czym jest obiekt? Definicja klasy. Składowe klasy pola i metody
Obiektowy PHP Czym jest obiekt? W programowaniu obiektem można nazwać każdy abstrakcyjny byt, który programista utworzy w pamięci komputera. Jeszcze bardziej upraszczając to zagadnienie, można powiedzieć,
MODELOWANIE I APROKSYMACJA FUNKCJI PRZENOSZENIA MASZYNEK STEROWYCH RAKIETY PRZECIWLOTNICZEJ
Mgr inż. Witold BUŻANTOWICZ Mgr inż. Jakub MIERNIK Dr hab. inż. Jan PIETRASIEŃSKI, prof. WAT Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.217 MODELOWANIE I APROKSYMACJA FUNKCJI PRZENOSZENIA
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.
1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie 1. Tworzenie animacji Wykres funkcji znajduje się poniżej: W środowisku Matlab, możemy tworzyć różnego rodzaju wykresy przy wykorzystaniu
WPROWADZENIE DO ŚRODOWISKA SCICOS
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.
LICZNIKI PODZIAŁ I PARAMETRY
LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Studia niestacjonarne Estymacja parametrów modeli, metoda najmniejszych kwadratów.
PRZETWARZANIE SYGNAŁÓW LABORATORIUM
2018 AK 1 / 5 PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćw. 0 Wykonujący: Grupa dziekańska: MATLAB jako narzędzie w przetwarzaniu sygnałów Grupa laboratoryjna: (IMIĘ NAZWISKO, nr albumu) Punkty / Ocena Numer
GENERACJA PRZEBIEGU SINUSOIDALNEGO.
GENERACJA PRZEBIEGU SINUSOIDALNEGO. Podstawą generacji sygnału sinusoidalnego jest równanie różnicowe wyprowadzone w sposób następujący. Transmitancja układu generującego jest równa: Na wyjściu spodziewany
Sterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
Tematyka egzaminu z Podstaw sterowania
Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................
Sterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
1.5. Sygnały. Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego
Sygnał- jest modelem zmian w czasie pewnej wielkości fizycznej lub stanu obiektu fizycznego Za pomocąsygnałów przekazywana jest informacja. Sygnałjest nośnikiem informacji. Za pomocą sygnału moŝna: badać
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z PODSTAW AUTOMATYKI W PROGRAMIE MATLAB dr inż. GRZEGORZ MZYK
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z PODSTAW AUTOMATYKI W PROGRAMIE MATLAB dr inż. GRZEGORZ MZYK Spis treści 1 Informacje wstępne 2 2 Środowisko Matlaba 2 2.1 Linia poleceń,komunikacja zsystememoperacyjnym...
Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych
Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Postawienie zadania i podstawowe idee jego rozwiązania Metody samostartujące (Eulera, Rungego-Kutty) Metody niesamostartujące
EL_w06: Wzmacniacze operacyjne zastosowania (1)
EL_w06: Wzmacniacze operacyjne zastosowania (1) Przypomnienie układów podstawowych Najprostsze filtry dolnoprzepustowe Sumator Wzmacniacze: różnicowy, pomiarowy, izolacyjny Przetworniki I->U, U->I (źródła
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,