Ćwiczenie nr 6 Charakterystyki częstotliwościowe
|
|
- Anatol Barański
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na podstawie wyznaczonych charakterystyk. 2 Wprowadzenie Charakterystyki dynamiczne częstotliwościowe są elementem tzw. analizy częstotliwościowej sygnałów. Charakterystyki częstotliwościowe należą do grupy dynamicznych. Określają zachowanie układu w sinusoidalnym stanie ustalonym. Jeżeli na wejście układu liniowego i stacjonarnego zostanie wprowadzony sygnał sinusoidalny, to po wygaśnięciu stanów przejściowych na wyjściu pojawi się również sygnał sinusoidalny o tej samej częstotliwości. W ogólnym przypadku sygnał wyjściowy będzie posiadał inną amplitudę niż sygnał wejściowy i będzie opóźniony w fazie. Układ można w zupełności opisać wykorzystując podane zachowanie, a mianowicie przedstawiając stosunek amplitudy na wyjściu do amplitudy na wejściu i różnicy faz w całym zakresie częstotliwości wymuszającej od zera do nieskończoności. Charakterystyki częstotliwościowe mogą być zdejmowane eksperymentalnie i na ich podstawie można dokonywać identyfikacji właściwości dynamicznych procesów. Ze względu na jednoznaczność między formą graficzną opisu procesów wyrażoną przez charakterystyki częstotliwościowe i formą analityczną, w postaci operatorowej, znając tę drugą formę można wykreślić charakterystyki częstotliwościowe dowolnych procesów. Za stan ustalony uznaje się stan, w którym wszystkie procesy przejściowe zakończyły się wygasły. Z obserwacji liniowych, stacjonarnych układów wynika, że jeżeli na wejście wprowadzi się wymuszenie sinusoidalne: x(t)=a x sinωt (2.1) to po pewnym czasie na wyjściu pojawi się również sygnał sinusoidalny o postaci: y(t)=a y sin(ωt+ϕ) (2.2) Rysunek 1 : Przebiegi wejściowe (t) i wyjściowe (t) układu w stanie ustalonym dla wymuszenia sinusoidalnego Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 1/9
2 Wykonując eksperyment, dla różnych częstości wymuszenia, oraz odnotowując wartości, oraz : ϕ=2π τ (2.3) T, ϕ=ω τ [rad] (2.4) można sporządzić charakterystyki we współrzędnych liniowych, przedstawiające zmiany stosunku amplitud A y (ω ) A x (ω) =M(ω ) (2.5) i przesunięcia fazowego () w funkcji częstotliwości badanego układu. Poglądowo taką charakterystykę przedstawia rys. 2. Interesujący jest formalny związek między tak otrzymanymi sygnałami () i (). Z definicji transmitancji operatorowej układu wynika: G(s)= Y (s) [A y sin(ωt+ϕ)] X(s) =L1 L 1 [A x sin(ωt)] (2.6) Rysunek 2: Przykład charakterystyki częstotliwościowej Wielkości i są stałymi, a sygnały (2.1) i (2.2) są wyrażone za pomocą identycznej funkcji, przy czym sygnał odpowiedzi (2.2) posiada przesunięcie. Wobec tego zależność (2.6) można zapisać w sposób: (2.7) G(s)= A y L 1 ϕ [sinωt] A x L 1 [sinωt] e ω s Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 2/9
3 Ponieważ =, to transmitancja operatorowa () w postaci transmitancji widmowej ( ) jest równa: G(s) s=jω =G(jω) (2.8) i wówczas zależność (2.7), po uproszczeniach, przyjmuje postać: G(jω )= A y A x e jω Otrzymana postać transmitancji widmowej ( ), dla określonej częstości =, jest postacią wykładniczą liczby zespolonej, która dla = posiada również liczbę zespoloną sprzężoną rys 3a. Liczba jest stosunkiem modułów, nazywanym wzmocnieniem układu i jest funkcją częstotliwości. Nazywana też jest charakterystyką częstotliwościową amplitudową lub charakterystyką modułu rys.3 (a). Z rys.1 wynika, że ujemna wartość () oznacza opóźnienie się wyjścia za wejściem. Przesunięcie fazowe () jest funkcją częstotliwości. Jeżeli i są stopniami wielomianów odpowiednio licznika () i mianownika () transmitancji operatorowej układu (), wówczas dla przesunięcie fazowe () wynosi: ϕ(ω ) nm π/2 (2.10) dlaω Zależność (), wykreślona w funkcji częstotliwości, nazywa się charakterystyką częstotliwościową fazową rys.2 (b). (2.9) Rysunek 3: Interpretacja graficzna: a) zależność (3.39) dla =, b) zależność (3.39) dla = 0 +, linią przerywaną zaznaczono ( ) dla = 0. Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 3/9
4 Postać charakterystyki częstotliwościowej amplitudowo-fazowej (rys.3) przedstawiona na płaszczyźnie zmiennej zespolonej (nazywanej też płaszczyzną ( ), mającej osie rzeczywistą i urojoną, nazywa się wykresem Nyquista. W praktyce najczęściej korzysta się z charakterystyki częstotliwościowej, która tak jak rys.2, przedstawia oddzielnie przebieg modułu i przebieg fazy, ale wyrażonej w skali logarytmicznej, przy czym moduł () przedstawia się w sposób: L(ω )=20logM(ω )[db] (2.11) Wartość logarytmu modułów () wyraża się w decybelach [db]. Oś rzędnych log wyrażona jest w dekadach a oś odciętych w poziomach co 20dB. Przebiegi charakterystyk przedstawia się w sposób uproszczony, za pomocą odcinków linii prostych (asymptot), zaznaczając częstość załamania (tzw. częstość sprzęgającą). (2.11) występującą dla () = 0. Nachylenie asymptot, wynoszące, np. 20/, oznacza się współczynnikiem kierunkowym 1, + 20/ będzie to +1. Taka postać charakterystyki częstotliwościowej nazywana jest wykresem Bodego. W Tablicy 1 znajdują się charakterystyki częstotliwościowe najczęściej występujących elementarnych procesów. Tabela 1: Charakterystyki częstotliwościowe najczęściej występujących elementarnych procesów. Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 4/9
5 Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 5/9
6 Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 6/9
7 Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 7/9
8 Instrukcja wykonania ćwiczenia W czasie ćwiczenia należy: 1. Pobrać ze strony przedmiotu plik L6 Charakterystyki częstotliwościowe i otworzyć go w programie Scilab. Plik zawiera model obiektu sterowania, dla którego będzie wyznaczana charakterystyka częstotliwościowa Wyznaczyć odpowiedź układu na wymuszenie sinusoidalne. Wyniki wpisać do tabeli: Gdzie: Fx częstotliwość sygnału wejściowego (wymuszenia) ustawiona w generatorze, Ax amplituda sygnału wejściowego, Ay amplituda sygnału wyjściowego zmierzona na wykresie, φy przesunięcie fazowe sygnału wyjściowego zmierzone na wykresie. Rysunek 4: Powiększony wycinek wykresu odpowiedzi układu z naniesionymi wielkościami, które należy wyznaczyć w ćwiczeniu. Na rysunku poniżej pokazany został sposób odczytu amplitudy i kąta opóźnienia fazowego φy bezpośrednio z wykresu odpowiedzi sinusoidalnej. Aby zwiększyć dokładność odczytu należy włączyć linie siatki i powiększyć część wykresu korzystając z funkcji Zoom (Tools Zoom) 3. Korzystając z danych zgromadzonych w tabeli wykreślić w sprawozdaniu charakterystykę częstotliwościową badanego układu Korzystając z programu Scilab wykonać następujące zadanie: Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 8/9
9 Układ regulacji składa się z: - regulatora PID (k=1, TI=1000, TD=0.1), - układu wykonawczego (inercyjny, k=2, T=100), - obiektu (oscylacyjny, k=0.1, T=1, ζ=0.7), - przetwornika pomiarowego (proporcjonalny, k=10). Należy: a) wyznaczyć charakterystyki częstotliwościowe (Nyquista) obiektu, b) wyznaczyć charakterystyki częstotliwościowe (logarytmiczne) obiektu, c) wyznaczyć charakterystykę częstotliwościową układu otwartego (wykres Nyquista), d) z wyznaczonej charakterystyki Nyquista odczytać zapas amplitudy i fazy układu, e) wyznaczyć charakterystykę częstotliwościową logarytmiczną układu otwartego (wykres Bodego). f) sprawdzić stabilność układu zamkniętego (pierwiastki równania charakterystycznego) f) dobrać wzmocnienie regulatora tak, żeby zapas fazy był większy od 30. Uwaga: Dla wszystkich wykresów częstotliwościowych przyjąć: fmin = 1e-6, fmax=1e6, step = Scilab funkcje przydatne do wykonania ćwiczenia Transmitancję operatorową w postaci G(s)= b 0+b 1 s+b 2 s b m s m a 0 +a 1 s+a 2 s b n s n można zapisać w Sciabie w następujący sposób: a) najpierw należy utworzyć wielomiany z licznika i mianownika przy pomocy funkcji poly: liczn=poly ([b0 b1 b2...bm],' s',' c ') mian=poly ([a0a1a2...an ],' s',' c ') w powyższych wzorach s oznacza zmienną, c oznacza, że wektor zawiera współczynniki wielomianu (można również podać pierwiastki - r ) b) następnie można utworzyć transmitancję obiektu, korzystając z funkcji syslin Gs=syslin(' c ',liczn/mian); komentarz: c oznacza układ ciągły ( d układ dyskretny wtedy trzeba też podać okres próbkowania) c) Na utworzonych w ten sposób transmitancjach można wykonywać operacje arytmetyczne np. Gotw=Gr*Gw*Go*Gp; d) d) Transmitancję układu zamkniętego Gzam można utworzyć wykonując: Gzam = 1 / (1+Gotw); e) Wykres Nyquista dla układu o transmitancji Gs tworzy się przy pomocy funkcji nyquist: nyquist (Gs, fmin, fmax, step); komentarz:(fmin i f max: zakres częstotliwości ujęty na wykresie, step: krok) f) Charakterystykę częstotliwościową logarytmiczną tworzy funkcja bode bode( Gs, fmin, fmax, step); komentarz: (fmin i f max: zakres częstotliwości ujęty na wykresie, step: krok) g) Rozkład pierwiastków układu zamkniętego można sprawdzić na wykresie Evansa: evans(gzam) h) Pierwiastki wielomianu można wyznaczyć korzystając z funkcji roots: roots(mian); komentarz:(mian wielomian charakterystyczny układu) Opracował: dr. inż. Radosław Cechowicz, prof. dr hab. inż. S.Płaska, mgr. inż. K. Łygas strona 9/9
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
Transmitancja operatorowa członu automatyki (jakiego??) jest dana wzorem:
PoniŜej przedstawiono standardowy tok otrzymywania charakterystyk częstotliwościowych: 1. Wyznaczenie transmitancji operatorowej. Wykonanie podstawienia s ωj. Wyznaczenie Re(G(jω )) oraz Im(G(jω ))-najczęściej
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
A6: Wzmacniacze operacyjne w układach nieliniowych (diody)
A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Sterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
Podstawy Automatyki ĆWICZENIE 4
Podstawy Automatyki Politechnika Poznańska Instytut Automatyki i Robotyki ĆWICZENIE 4 Wyznaczanie charakterystyk częstotliwościowych Ćwiczenie ma na celu przedstawienie praktycznych metod wyznaczania charakterystyk
Korekcja układów regulacji
Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej
Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest
Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający
K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych
METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Uniwersalny system pomiarowy do obsługi wieloparametrowego eksperymentu
Ćwiczenie nr 5 Uniwersalny system pomiarowy do obsługi wieloparametrowego eksperymentu Cel ćwiczenia: zapoznanie ze sposobem zestawienia systemu pomiarowego składającego się ze standardowej aparatury pomiarowej
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
Automatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Badanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
Ćw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR
Dr inż Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw S-III3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy
Kompensator PID G c s =G cm sω z ω L s s ω p G cm =G c0 aby nie zmienić częstotliwości odcięcia f L f c /0=500 Hz aby nie zmniejszyć zapasu fazy Łukasz Starzak, Sterowanie przekształtników elektronicznych,
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego
4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź
Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych
Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,
BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
Laboratorium Podstaw Metrologii BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jest: przybliżenie zagadnień dotyczących pomiarów wielkości zmiennych w czasie,
1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
ELEMENTY ELEKTRONICZNE
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE UKŁADY RC REV. 1.2 1. CEL ĆWICZENIA - praktyczna weryfikacja teoretycznych własności układów RC przy pobudzeniu przebiegami sinusoidalnymi,
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Sterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Techniki regulacji automatycznej
Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)
A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz
Ćwiczenie A2 : Filtry bierne
Ćwiczenie A2 : Filtry bierne Jacek Grela, Radosław Strzałka 29 marca 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i deinicje, których używaliśmy w obliczeniach: 1. Stała czasowa iltru RC
Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE
Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Cel: Zapoznanie ze składnią języka SPICE, wykorzystanie elementów RCLEFD oraz instrukcji analiz:.dc,.ac,.tran,.tf, korzystanie z bibliotek
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego