Automatyka i robotyka
|
|
- Henryka Lis
- 5 lat temu
- Przeglądów:
Transkrypt
1 Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37
2 Plan wykładu Wprowadzenie Podstawowe człony dynamiczne Kształtowanie charakterystyki częstotliwościowej Pasmo przenoszenia 2 z 37
3 Plan wykładu Wprowadzenie Podstawowe człony dynamiczne Kształtowanie charakterystyki częstotliwościowej Pasmo przenoszenia 2 z 37
4 Plan wykładu Wprowadzenie Podstawowe człony dynamiczne Kształtowanie charakterystyki częstotliwościowej Pasmo przenoszenia 2 z 37
5 Plan wykładu Wprowadzenie Podstawowe człony dynamiczne Kształtowanie charakterystyki częstotliwościowej Pasmo przenoszenia 2 z 37
6 Koncepcja odpowiedzi częstotliwościowej Fakt W stanie ustalonym, sinusoidalny sygnał wejściowy układu liniowego generuje odpowiedź sinusoidalną o tej samej częstotliwości ale o innej amplitudzie i przesunięciu fazowym. Zmiana amplitudy i fazy zależy od częstotliwości Odpowiedź częstotliwościowa - wyrażenie analityczne G(jω) = G(s) s jω 3 z 37
7 Koncepcja odpowiedzi częstotliwościowej Dla układu gdzie G(s) = L(s) M(s) G(jω) = L(jω) M(jω) = G(jω) = L(jω) M(jω) = arctg mamy G(jω) = L(ω) M(jω) = G(jω) G(jω) Re(L(jω) 2 + Im(L(jω) 2 ) Re(M(jω) 2 + Im(M(jω) 2 ) ( ) Im(L(jω)) arctg Re(L(jω)) ( ) Im(M(jω)) Re(M(jω)) 4 z 37
8 Odpowiedź częstotliwościowa Przykład Narysuj charakterystykę częstotliwościową układu G(s) = L(s) M(s) = s + 5 s + 10 G(jω) = jω + 5 jω + 10) Wyznaczamy moduł i przesuniecie fazowe G(jω) = L(ω) ω M(jω) = ω ( ω ) ( ω G(jω) = L(jω) M(jω) = arctg arctg 5 10) 5 z 37
9 Odpowiedź częstotliwościowa Przykład skrypt Matlab a 0.65 [rad] [rad/sec] w=0:0.2:100; s=tf( s ); sys=(s+5)/(s+10) y=freqresp(sys,w); plot(w,squeeze(abs(y))) plot(w,squeeze(angle(y))) z [rad/sec]
10 Odpowiedź częstotliwościowa Przykład Wykres Bode go (polecenie bode(sys) w Matlab ie) 1 Bode Diagram 0.9 Magnitude (abs) Phase (rad) z Frequency (rad/sec)
11 Odpowiedź częstotliwościowa Dla dowolnej transmitancji G(s) posiadającej m zer i n biegunów mamy G(s) = K (s z 1)(s z 2 )...(s z m 1 )(s z m ) (s p 1 )(s p 2 )...(s p n 1 )(s p n ) i dlatego G(jω) =K (jω z 1)(jω z 2 )...(jω z m 1 )(jω z m ) (jω p 1 )(jω p 2 )...(jω p n 1 )(jω p n ) =K(jω z 1 )(jω z 2 )...(jω z m 1 )(jω z m ) 1 1 (jω p 1 ) (jω p 2 ) (jω p n 1 ) (jω p n ) 8 z 37
12 Odpowiedź częstotliwościowa Dla wysokich czestotliwości ω możemy na podstawie liczby zer (m) i biegunów (n) wyznaczyć końcowe wzmocnienie oraz przesunięcie fazowe lim G(jω) = K 1 ω ω n m lim ω G(jω) = (n m)π 2 9 z 37
13 Skala [db] Określenie stosunku dwóch poziomów mocy - jednostka [Bel] zbyt duża w praktyce dlatego używamy [db] ( ) ( ) Pwy Pwy Q = log 10 [Bel] = 10log P 10 [db] we P we Ponieważ moc sygnału jest proporcjonalna do () 2 amplitudy sygnału to ( ) 2 Awy Q = 10log 10 = 20log A 10 we ( Awy A we ) [db] 10 z 37
14 Skala [db] [db] stosunek mocy stosunek amplitud z 37
15 Skala [db] Dla transmitancji G(s) mamy oraz Najważniejsza właściwość 20log 10 G(jω) = 20log 10 Y (jω) U(jω) G(jω) = Y (jω) U(jω) 20log 10 G 1 (jω)g 2 (jω)/g 3 (jω) =20log 10 G 2 (jω) + 20log 10 G 1 (jω) 20log 10 G 3 (jω) G 1 (jω)g 2 (jω)/g 3 (jω) = G 1 (jω) + G 2 (jω) G 3 (jω) 12 z 37
16 Podstawowe człony dynamiczne Człon całkujący Transmitancja Odpowiedź częstotliwościowa G(s) = 1 s G(jω) = 1 ω, G(jω) = π 2 lub 90o 13 z 37
17 Podstawowe człony dynamiczne Człon całkujący 5 Bode Diagram 0 Magnitude (db) Phase (deg) z Frequency (rad/sec)
18 Podstawowe człony dynamiczne Człon inercyjny Transmitancja członu inercyjnego G(s) = 1 s + a = 1 a ( s a + 1 ) (LF) Dla s 0 mamy 20log 10 G(jω) = 20log 10 (1/a) (MF) Punkt przegięcia dla s = a[rad/sec] (HF) Dla s mamy 1 20log 10 G(jω) =20log 10 a 20log 10 G(jω) = 90 o ω a 20log 10 ω 15 z 37
19 Podstawowe człony dynamiczne Człon inercyjny Bode Diagram 10 G(s)=1/(s+5) Magnitude (db) Phase (deg) Frequency (rad/sec) 16 z 37
20 Podstawowe człony dynamiczne Człon różniczkujący Transmitancja Odpowiedź częstotliwościowa G(jω) = ω, G(s) = s G(jω) = π 2 lub + 90o 17 z 37
21 Podstawowe człony dynamiczne Człon różniczkujący 20 Bode Diagram 15 Magnitude (db) Phase (deg) z Frequency (rad/sec)
22 Podstawowe człony dynamiczne Rzeczywiste zero Transmitancja układu to ( s ) G(s) = (s + a) = a a + 1 (LF) Dla s 0 mamy 20log 10 G(jω) = 20log 10 (a) (MF) Punkt przegięcia dla s = a[rad/sec] (HF) Dla s mamy 20log 10 M(jω) =20log 10 a+20log 10 ω a 20log 10 ω G(jω) =90 o 19 z 37
23 Podstawowe człony dynamiczne Rzeczywiste zero Bode Diagram 10 G(s)=1/(s+5) Magnitude (db) Phase (deg) Frequency (rad/sec) 20 z 37
24 Podstawowe człony dynamiczne Człon 2-ego rzędu Transmitancja członu to 1 G(s)= s 2 +2ζ ω n s+ωn 2 = ω 2 n ( s 2 ω 2 n 1 ) +2ζ ω s n +1 (LF) Dla s 0 mamy 20log 10 G(jω) = 20log 10 ω 2 (MF) Punkt przegięcia dla s = ω n [rad/sec] (HF) Dla s mamy 20log 10 G(jω) 20log 10 ω 2 = 40log 10 ω G(jω) = 180 o 21 z 37
25 Podstawowe człony dynamiczne Człon 2-ego rzędu Bode Diagram Magnitude (db) Phase (deg) Frequency (rad/sec) 22 z 37
26 Podstawowe człony dynamiczne Sprzężone zera Transmitancja członu to G(s)=s 2 +2ζ ω n s+ω 2 n =ω 2 n ( s 2 ω 2 n +2ζ s ) +1 ω n (LF) Dla s 0 mamy 20log 10 G(jω) = 20log 10 ω 2 (MF) Punkt przegięcia dla s = ω n [rad/sec] (HF) Dla s mamy 20log 10 G(jω) 20log 10 ω 2 = 40log 10 ω G(jω) =180 o 23 z 37
27 Podstawowe człony dynamiczne Sprzężone zera Bode Diagram 120 s 2 +10s Magnitude (db) Phase (deg) Frequency (rad/sec) 24 z 37
28 Podstawowe człony dynamiczne - podsumowanie Opis G(s) punkt Nachylenie przegięcia HF ([db/dec]) Stała K - 0 Biegun w 0 1 s Zero w 0 s Rzecz. biegun τs+1 τ Rzecz. zero τs + 1 τ +20 ω 2 n s 2 +2ζ ω n s+ω 2 n Sprzężone bieguny ω n Sprzężone zera (s 2 +2ζ ω ωn 2 n s+ωn) 2 ω n z 37
29 Kształtowanie char. częstotliwościowej Transmitancja układu zamkniętego G cl (s) = C(s)G(s) 1 + C(s)G(s) = G o(s) 1 + G o (s) gdzie G o (s) = C(s)G(s). Rysując wykres Bode go dla G o (s) dodajemy (graficznie) charakterystyki częstotliwościowe regulatora C(s) i obiektu G(s), gdyż 20log 10 G o (jω) =20log 10 C(jω)G(jω) =20log 10 C(jω) + 20log 10 G(jω) oraz G o (jω) = C(jω) + G(jω) 26 z 37
30 Projektowanie regulatorów w dziedzinie częstotliwości Metody projektowania w dziedzinie częstotliwości mają wiele zalet: Stabilność i wymagania jakościowe są prezentowane na tym samym wykresie. Możemy używać rzeczywistych pomiarów (FRF) zamiast modelu w formie transmitancji. Projektowanie jest niezależne od rzędu układu. Regulatory dla układów z opóźnieniami też możemy projektować bez większych trudności. Metody graficzne (analiza i synteza z użyciem odpowiednich diagramów) jest relatywnie łatwa. 27 z 37
31 Zapas wzmocnienia i fazy Zapas wzmocnienia Zmiana wzmocnienia w układzie otwartym (K(s)G(s)) potrzebna aby układ zamknięty był niestabilny. Układy z większym zapasem wzmocnienia są bardziej odporne (ang. robust) na zmiany parametrów układu zanim układ zamknięty będzie niestabilny. 28 z 37
32 Zapas wzmocnienia i fazy Zapas fazy Zmiana fazy w układzie otwartym (K(s)G(s)) potrzebna aby układ zamknięty był niestabilny. Zapas fazy określa tolerancję układu na opóźnienia. Opóźnienia większe niż 180/ω pc (ω pc - częstotliwość przy którym przesunięcie fazowe = 180 o ) w pętli powodują niestabilność układu zamkniętego. 29 z 37
33 Zapas wzmocnienia i fazy Przykład K(s) = 50,G(s) = 1 s 3 + 9s s Bode Diagram Gm = 13.3 db (at 5.48 rad/sec), Pm = 101 deg (at 1.85 rad/sec) 0 Magnitude (db) Phase (deg) z Frequency (rad/sec)
34 Zapas wzmocnienia i fazy Zmieniając wzmocnienie układu (K(s) = 5000(100 )) nie musimy kreślić nowego wykresu Bode go aby odczytać zapas fazy. Wystarczy na utworzonym już wykresie sprawdzić zapas fazy dla 40dB (40dB odpowiada wzmocnieniu 100 razy). 50 Bode Diagram Gm = 26.7 db (at 5.48 rad/sec), Pm = 59.6 deg (at 16.9 rad/sec) Magnitude (db) Phase (deg) Frequency (rad/sec) 31 z 37
35 Pasmo przenoszenia Pasmem przenoszenia (ang. bandwidth) - częstotliwość (ω BW ) przy której wzmocnienie układu zamkniętego = 3dB. Jednak korzystając z metod odpowiedzi częstotliwościowej oczekujemy określenia odpowiedzi układu zamkniętego na podstawie odpowiedzi układu otwartego. Na podstawie odpowiedzi układu 2-ego rzędu, możemy przyjąć, iż pasmo przenoszenia odpowiada częstotliwości dla której wzmocnienie układu otwartego jest pomiędzy 6 i 7.5dB (przyjmując, że przesuniecie fazowe dla tego wzmocnienia jest pomiędzy 135 o i 225 o ). 32 z 37
36 Pasmo przenoszenia Przykład Transmitancja układu zamkniętego G cl = 1 s s Bode Diagram 0 Magnitude (db) Phase (deg) ω BW =1.4[rad/sec] 33 z Frequency (rad/sec)
37 Pasmo przenoszenia Przykład dla ω < ω BW dla ω > ω BW 1.5 Wyjscie 1.5 Wyjscie Wymuszenie Wymuszenie z 37
38 Pasmo przenoszenia Relacje ze współczynnikiem tłumienia (ζ ) i czasem ustalania(t S ) ω BW = ω n (1 2ζ 2 ) + 4ζ 4 4 ζ ω n = 4 T s ζ ω BW *T S z ζ
39 Pasmo przenoszenia Relacje ze współczynnikiem tłumienia (ζ ) i czasem max. przeregulowania (T P ) ω BW = ω n (1 2ζ 2 ) + 4ζ 4 4 ζ π ω n = T p 1 ζ ω BW *T P z ζ
40 Wskaźniki jakościowe Określanie wskaźników jakościowych układu zamkniętego: musimy zapewnić stabilność układu otwartego jeśli będziemy używać diagramów Bode go. sprawdzamy czy ω gc < ω pc ) aby stwierdzić czy układ zamknięty będzie stabilny. dla układu 2-ego rzędu, współczynnik tłumienia (układu zamkniętego) jest w przybliżeniu równa PM/100 (jeśli PM= 0 60 o. dla układu 2-ego rzędu, istnieją zależności pomiędzy współczynikiem tłumienia, pasmem przenoszenia i czasem ustalania. w przybliżeniu możemy przyjąć że pasmo przenoszenia będzie równe częstotliwości drgań własnych. 37 z 37
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
Bardziej szczegółowoProjektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający
Bardziej szczegółowoKompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Bardziej szczegółowoAutomatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Bardziej szczegółowoSposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Bardziej szczegółowoĆwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoTechnika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Bardziej szczegółowoPodstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Bardziej szczegółowoPodstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Bardziej szczegółowoukładu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Bardziej szczegółowoStabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Bardziej szczegółowoCHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Bardziej szczegółowoTeoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Bardziej szczegółowoCzęść 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Bardziej szczegółowoProjektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie
Bardziej szczegółowoJęzyki Modelowania i Symulacji
Języki Modelowania i Symulacji Projektowanie sterowników Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 4 stycznia 212 O czym będziemy mówili? 1 2 3 rlocus Wyznaczanie trajektorii
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Bardziej szczegółowoPodstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Bardziej szczegółowoPRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 6. Badanie
Bardziej szczegółowoAutomatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
Bardziej szczegółowoOpis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Bardziej szczegółowoInżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
Bardziej szczegółowoTechniki regulacji automatycznej
Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych
Bardziej szczegółowoTEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW
TEORIA STEROWANIA I, w 5 dr inż. Adam Woźniak ZTMiR MEiL PW Układy LTI- SISO Stacjonarne, przyczynowe liniowe układy z jednym wyjściem i jednym wejściem najczęściej modeluje się przy pomocy właściwej transmitancji
Bardziej szczegółowoBadanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Bardziej szczegółowoPodstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
Bardziej szczegółowoLaboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Bardziej szczegółowoKompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy
Kompensator PID G c s =G cm sω z ω L s s ω p G cm =G c0 aby nie zmienić częstotliwości odcięcia f L f c /0=500 Hz aby nie zmniejszyć zapasu fazy Łukasz Starzak, Sterowanie przekształtników elektronicznych,
Bardziej szczegółowoWłasności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Bardziej szczegółowoTemat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego
Bardziej szczegółowoPodstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane
Bardziej szczegółowo4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()
4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1
Bardziej szczegółowo( 1+ s 1)( 1+ s 2)( 1+ s 3)
Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)
Bardziej szczegółowoanalogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
Bardziej szczegółowoPodstawy środowiska Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Automatyki i Robotyki Podstawy środowiska Matlab Poniżej przedstawione jest użycie podstawowych poleceń w środowisku
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Bardziej szczegółowoSterowanie Serwonapędów Maszyn i Robotów
Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,
Bardziej szczegółowoAnaliza ustalonego punktu pracy dla układu zamkniętego
Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV
Bardziej szczegółowoAutomatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Bardziej szczegółowoTransmitancja modelu, procesu i regulatora wykorzystana w badaniach. Rzeczywisty regulator PID. Transmitancja regulatora: = sti. Transmitancja modelu:
1. Cel projektu. Zasymulować odpowiedź skokową procesu P(s). Na podstawie tej odpowiedzi skokowej, określić τ oraz T i wyznaczyć parametry modelu M(s), którego rodzaj jest podany. Model ten będzie wykorzystany
Bardziej szczegółowoW celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Bardziej szczegółowoLaboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Bardziej szczegółowoTransmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Bardziej szczegółowoUkład regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Bardziej szczegółowoKorekcja układów regulacji
Korekcja układów regulacji Powszechnym sposobem wpływania na jakość procesów regulacji jest wprowadzenie urządzeń (członów) korekcyjnych. W przeważającej większości przypadków niezbędne jest umieszczenie
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
Bardziej szczegółowoUKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
Bardziej szczegółowoPodstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Bardziej szczegółowoĆwiczenie A2 : Filtry bierne
Ćwiczenie A2 : Filtry bierne Jacek Grela, Radosław Strzałka 29 marca 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i deinicje, których używaliśmy w obliczeniach: 1. Stała czasowa iltru RC
Bardziej szczegółowoPolitechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1
Poliechnia Poznańsa, Kaedra Serowania i Inżynierii Sysemów Wyłady 3,4, sr. 5. Charaerysyi logarymiczne (wyresy Bodego) Lm(ω) = 20 lg G(jω) [db = decybel] (20) (Lm(ω) = [db] 20 lg G(jω) = G(jω) = 0 /20,22
Bardziej szczegółowoTransmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Bardziej szczegółowoDynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Bardziej szczegółowoĆwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Bardziej szczegółowoSterowanie przekształtników elektronicznych zima 2011/12
Sterowanie przekształtników elektronicznych zima 2011/12 dr inż. Łukasz Starzak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Mikroelektroniki i Technik Informatycznych
Bardziej szczegółowoJęzyki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4
Języki Modelowania i Symulacji 2018 Podstawy Automatyki Wykład 4 dr inż. Marcin Ciołek Katedra Systemów Automatyki Wydział ETI, Politechnika Gdańska Języki Modelowania i Symulacji dr inż. Marcin Ciołek
Bardziej szczegółowoAnaliza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Bardziej szczegółowoPodstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Bardziej szczegółowoPODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Bardziej szczegółowoĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Bardziej szczegółowoPolitechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207
Bardziej szczegółowo1 Wprowadzenie. WFiIS
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko:. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Bardziej szczegółowoREGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
Bardziej szczegółowoCharakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
Bardziej szczegółowoK p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych
METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych
Bardziej szczegółowoInformatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
Bardziej szczegółowoĆwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Bardziej szczegółowoTemat: Wzmacniacze operacyjne wprowadzenie
Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym
Bardziej szczegółowoLepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Bardziej szczegółowoWzmacniacz operacyjny zastosowania liniowe. Wrocław 2009
Wzmacniacz operacyjny zastosowania linio Wrocław 009 wzmocnienie różnico Pole wzmocnienia 3dB częstotliwość graniczna k D [db] -3dB 0dB/dek 0 db f ca f T Tłumienie sygnału wspólnego - OT ins M[ V / V ]
Bardziej szczegółowoPOMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Bardziej szczegółowoA3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
Bardziej szczegółowoKatedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Bardziej szczegółowoĆwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Bardziej szczegółowoFiltry aktywne filtr górnoprzepustowy
. el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa
Bardziej szczegółowoLaboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
Bardziej szczegółowoPodstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Bardziej szczegółowoA-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
Bardziej szczegółowo4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego
4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź
Bardziej szczegółowoIII. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH
III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest
Bardziej szczegółowoELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Bardziej szczegółowoPodstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Bardziej szczegółowoBadanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki
Bardziej szczegółowoStatyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Bardziej szczegółowo