PRZETWARZANIE SYGNAŁÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRZETWARZANIE SYGNAŁÓW"

Transkrypt

1 PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego

2 Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania sygnałów

3 Szereg Fouriera i przekształcenie Fouriera Jean Baptiste Joseph Fourier stwierdził, że pewne funkce można przedstawić w postaci nieskończone sumy harmonicznych teoria transmisi ciepła, teoria drgań, efekt szklarniowy, prace nad liczbą rozwiązań równań algebraicznych sekretarz Akademii Francuskie, członek Królewskie Szwedzkie Akademii Nauk

4 rygonometryczny szereg Fouriera ft okresowa, okres, spełnia warunki Dirichleta; rozwinięcie ft w szereg trygonometryczny Fouriera: n f t a [ a cos n t b sin n t] n n =/, n=,,,... współczynniki rozwinięcia: a / f t / dt / a cos n f t n t dt bn / / / f tsin n t dt

5 Wykładniczy szereg Fouriera rozwinięcie ft w szereg wykładniczy Fouriera: n t Fn exp n n f t współczynniki rozwinięcia F n F n e arg F n F n / f / t exp n t d { F n } - widmo amplitudowe, {argf n } widmo fazowe { F n } - widmo mocy sygnału ft Związek między współczynnikami rozwinięcia w szereg wykładniczy i w szereg trygonometryczny dla n>=: F n a n b n F n a n b n

6 Przykłady rozwinięć w SF I A rect t - ciąg impulsów prostokątnych o współczynniku wypełnienia / współczynniki rozwinięcia: =/ F n / / A / rect texp n t dt Aexp nt dt exp nt / n / / F n A n exp n t / / A [exp n / exp n / ] n A [cos n / n sin n / cos n / sin n / ]

7 Przykłady rozwinięć w SF I B rect t - ciąg impulsów prostokątnych o współczynniku wypełnienia / współczynniki rozwinięcia: =/ F n A [cos n / n sin n / cos n / sin n / ] A n sin n / A sin n / n / A sin n / n / A n sin c F n A n sin n / A sin n / n F n A n sin c

8 Przykłady rozwinięć w SF I C rect t - ciąg impulsów prostokątnych o współczynniku wypełnienia / współczynniki rozwinięcia: F n A n sin c =/ przebiegi współczynników rozwinięcia dla różnych wartości i ustalone wartości.

9 Przykłady rozwinięć w SF I D rect t - ciąg impulsów prostokątnych o współczynniku wypełnienia /: =/ współczynniki rozwinięcia: F n A n sin c rozwinięcie funkci rect t : rect A n t Fn exp n t sin c exp n n n t

10 Przykłady rozwinięć w SF II A Dla wypełnienia 5% i symetrii przebiegu względem obu osi znika składowa stała, a współczynniki są rzeczywiste. Współczynniki: Rozwinięcie w szereg Fouriera: 4A a n sin n / n rect 4 A t an exp n t [cos t cos3 t cos5 t n ] Analizowany przebieg prostokątny est sumą nieparzystych harmonicznych funkci cos t z maleącymi amplitudami, nie zawiera składowe stałe średnie.

11 Przykłady rozwinięć w SF II B 4A a n sin n / n Sygnał moduły współczynników rozwinięcia 4A rect t [cos t cos3 t cos5 t ] Analizowany przebieg - suma nieparzystych harmonicznych z maleącymi amplitudami, nie zawiera składowe stałe średnie.

12 Przykłady rozwinięć w SF II C 4A rect t [cos t cos3 t cos5 t ] Przebieg prostokątny aproksymowany sumą edne, dwóch, trzech i czterech harmonicznych.

13 Przykłady rozwinięć w SF III Ciąg t: k t t k współczynniki rozwinięcia: F n / / / / k t kexp n t dt texp nt dt =/ rozwinięcie ciągu t: : t Fn exp n t exp n t exp n n n n t

14 Przekształcenie Fouriera Proste i odwrotne przekształcenia Fouriera funkci ft F=F{ft} ftf F f texp t dt f t F exp t d istnieą gdy ft est bezwzględnie całkowalna Zapis Fω argfω - widmo gęstości amplitudy - widmo fazowe F F e arg F

15 Wybrane właściwości przekształcenia Fouriera I

16 Wybrane właściwości przekształcenia Fouriera II ransformata pochodne ft ft F f t F, f n t n F Przesunięcie w czasie ft F ft-t exp-t F

17 Wybrane właściwości przekształcenia Fouriera III ransformata splotu funkci f tf, f tf est iloczynem transformat splatanych funkci!!! F{ f t* f t} F F

18 Wybrane właściwości przekształcenia Fouriera IV ransformata iloczynu funkci f tf, f tf est splotem transformat mnożonych funkci!!!!!! F{ f t f t} F * F

19 Przykłady transformat Fouriera I Sygnał prostokątny o czasie trwania rect: F f texp t dt rect exp t dt F rect exp t dt / / Aexp t dt A exp t / / F A exp t A [exp / exp / / / ]

20 Przykłady transformat Fouriera II Sygnał prostokątny o czasie trwania rect: / sin ] / sin / cos / sin / [cos ] / exp / [exp A A A F sin sin / sin c A A A F

21 Przykłady transformat Fouriera III Sygnał prostokątny o czasie trwania rect: F sygnału prostokątnego: F A sin c F est funkcą rzeczywistą parzystą część uroona est zerowa. Wykres F

22 Przykłady transformat Fouriera IV Sygnał prostokątny o czasie trwania rect: F sygnału prostokątnego: F A sin c Położenia zer części rzeczywiste i modułu F ω=±kπ/ k> Szerokość listka głównego 4π/ mierzona ako odległość między zerami modułu F Położenia ekstremów listków bocznych ω m = ±3π/±mπ/ m=,... Szerokość listków bocznych π/

23 Przykłady transformat Fouriera V Sygnał prostokątny o czasie trwania rect: F sygnału prostokątnego: F A sin c Wartość maksymalna listka głównego A Wartość maksymalna modułu pierwszego listka bocznego - A/3π Asinc3π/; Stosunek maks. wartości modułów listka pierwszego i głównego /3π=.

24 Przykłady transformat Fouriera VI Znormalizowany moduł F sygnału prostokątnego rect o czasie trwania : F sin c A linia ciągła czas trwania sygnału ; linia przerywana czas trwania /. Maksymalna wartość listka głównego modułu F dla czasu trwania ; dla czasu trwania / / Maksymalna wartość modułu pierwszego listka bocznego po normalizaci /3π Stosunek maks. wartości modułów listka pierwszego i głównego /3π=.

25 Przykłady transformat Fouriera VII Dystrybuca delta Diraca: Właściwość dystrybuci: f t t t t f f t t f ransformata dystrybuci: F{ t} texp t dt

26 Przykłady transformat Fouriera VIII Funkca stała F nie istniee w myśl definici funkca nie est bezwględnie całkowalna. Można wyznaczyć wartość główną F przy ->+: F lim lim / / exp t dt lim sin c sin c Definica delty Diraca: k t lim k sinc kt

27 Przykłady transformat Fouriera IX Funkca stała Właściwość symetrii F!!!!! ft F Ft f- Skoro F delty Diraca est funkcą stałą: F{ t} texp t dt Na mocy właściwości symetrii F transformata funkci stałe ma postać delty Diraca: F

28 Przykłady transformat Fouriera X Sygnał cosinusoidalny o ograniczonym czasie trwania paczka i ednostkowe amplitudzie / / / / / / ] exp [exp ]exp exp [exp exp cos dt t t dt t t t dt t t / / exp cos ]exp / / [ cos exp dt t t dt t t t t dt t t f F

29 Przykłady transformat Fouriera XI Sygnał cosinusoidalny o ograniczonym czasie trwania paczka i ednostkowe amplitudzie / / ] exp [exp dt t t / / / / / / exp exp ] exp [exp t t dt t t

30 Przykłady transformat Fouriera XII Sygnał cosinusoidalny o ograniczonym czasie trwania paczka i ednostkowe amplitudzie / / exp t / exp t / Analogia do obliczania F okna prostokątnego: F A exp t A [exp / exp / / / ] A [exp / exp / ] A [cos / sin / cos / sin / ] A sin / zostae zastąpione przez - bądź +

31 Przykłady transformat Fouriera XIII Sygnał cosinusoidalny o ograniczonym czasie trwania paczka i ednostkowe amplitudzie ] sin [sin exp exp / / / / c c t t / sin A Analogia do obliczania F okna prostokątnego: zostae zastąpione przez - bądź +

32 Przykłady transformat Fouriera XIV Sygnał cosinusoidalny o ograniczonym czasie trwania paczka i ednostkowe amplitudzie F [sin c sin c ] Moduł F paczki funkci cosinus o czasie twania, oś Y znormalizowana do /. Położenia ekstremów, zer, wartości maksymalne listka głównego i listków bocznych określamy podobnie ak w przypadku F okna prostokątnego.

33 Przykłady transformat Fouriera XV Sygnał cosinusoidalny F nie istniee w sensie definici, ponieważ funkca cosinus nie est bezwzględnie całkowalna. Można wyznaczyć wartość główną F paczki fali cos przy ->+. / F cos texp t dt [sin c sin c ] / Definica delty Diraca: k t lim k sinc kt F{cos t} lim [ sin c sin c ] [ ]

34 Przykłady transformat Fouriera XVI Sygnał sinusoidalny F nie istniee w sensie definici. Można wyznaczyć wartość główną F paczki fali sin przy ->+. F paczki fali sin: F{sin t } [ sin c sin c ] F{sin t} [ ] na rysunku Fω!!

35 Przykłady transformat Fouriera XVII Zespolony sygnał wykładniczy exp t cos t sin t Sygnał cosinusoidalny F{cos t} [ ] Sygnał sinusoidalny na rys. F{sinω o t} F{sin t} [ ] F{exp t} F{cos t} F{sin t} Jest to tzw. sygnał analityczny posiada niezerowe wartości F tylko po edne stronie początku układu.

36 Przykłady transformat Fouriera XVIII F dowolne funkci okresowe nie istniee w sensie definici Można taką funkcę rozwinąć w SF: t Fn exp n n f t a następnie przeprowadzić F rozwinięcia - ponieważ znamy F zespolone funkci wykładnicze!!! F n n n F

37 Przykłady transformat Fouriera XIX F dowolne funkci okresowe nie istniee w sensie definici Można taką funkcę rozwinąć w SF, potem przeprowadzić F rozwinięcia Ciąg dystrybuci Diraca posiada następuące rozwinięcie w SF: t t Fn exp n t exp n n n wobec tego ego F est równa: F { t} n n n n

38 Przykłady transformat Fouriera XX Przebieg prostokątny rect t okres,wypełnienie /, amplituda A, ω =π/: Sposób I Współczynniki rozwinięcia w SF Wyznaczamy rozwinięcie w SF sygnału prostokątnego, a następnie F rozwinięcia: F n A n sin c / exp n t dt / F{ rect t} F{ n F n exp n t} A A n n n sin c n n sin c n

39 Przykłady transformat Fouriera XXI Przebieg prostokątny rect t okres,wypełnienie /, amplituda A, ω =π/: Sposób II okresowy sygnał prostokątny est wynikiem splotu okresowego ciągu delt Diraca o okresie i okna prostokątnego o amplitudzie A i czasie trwania rect t rect t* t rect t* t k k k rect t k F splotu funkci est iloczynem F! F{ f t* f t} F F F obu splatanych funkci znamy!!! F { t} n n F A sin c

40 Przykłady transformat Fouriera XXII Przebieg prostokątny rect t okres,wypełnienie /, amplituda A, ω =π/: Sposób II okresowy sygnał prostokątny est wynikiem splotu okresowego ciągu delt Diraca o okresie i okna prostokątnego o amplitudzie A i czasie trwania F { t} n n F A sin c F{ rect t} F{ t} F{ rect } [ n n ] A sin c A A n n n sin c n n sin c n

41 ransformaca Fouriera podsumowanie właściwości Sygnał rzeczywisty parzysty - F rzeczywista, parzysta przykład cos t, rectt Sygnał rzeczywisty nieparzysty przykład sin t, - F uroona, nieparzysta Sygnał uroony parzysty przykład cos t - F uroona, parzysta Sygnał uroony nieparzysty przykład sin t - F rzeczywista, nieparzysta

42 ransformata Fouriera Iloczyn funkci cosinusoidalne o pulsaci i ciągu delt Diraca o okresie =π/, >> k t t k F { t} n n F{cos t} [ ] F iloczynu funkci est splotem transformat! Należy wyznaczyć splot F funkci cosinusoidalne i F ciągu delt Diraca!!! F{cos t t} F{cos t}* F{ t}

43 ransformata Fouriera Iloczyn funkci cosinusoidalne o pulsaci i ciągu delt Diraca o okresie =π/, > Splot transformat funkci cosinusoidalne i ciągu delt Diraca: {cos } {[ ]}*[ F t t n] n F {cos t t} n n

44 F tw. o próbkowaniu I Iloczyn funkci cosinusoidalne o pulsaci i ciągu delt Diraca o okresie =π/, > ransformata iloczynu funkci cosinusoidalne i ciągu delt Diraca: F {cos t t} n n ransformata iloczynu dowolne funkci i ciągu delt Diraca: F { f t t} F * F{ t} F n n

45 F tw. o próbkowaniu II F { f t t} F n n Widmo sygnału spróbkowanego est okresowe z okresem równym częstotliwości pulsaci próbkowania!! Jak wynika z rysunku obok, aby kolene repliki widm nie nałożyły się na siebie, należy spełnić warunek: f >=f max ω >=ω max!!!!!! Jest to tzw. twierdzenie o próbkowaniu tw. Shannona, warunek Nyquista, które wymaga, by sygnał był próbkowany z częstotliwością/pulsacą conamnie równą podwoone wartości maksymalne częstotliwości/pulsaci widma sygnału. W praktyce warunek ten musi być spełniony z nadmiarem. Jest to twierdzenie o fundamentalnym znaczeniu dla cyfrowego przetwarzania sygnałów. Jego niespełnienie skutkue niemożnością odtworzenia sygnału ciągłego na podstawie ego próbek.

46 F tw. o próbkowaniu III F { f t t} F n n wierdzenie o próbkowaniu wymaga, by sygnał był próbkowany z częstotliwością/ pulsacą conamnie równą podwoone wartości maksymalne częstotliwości/ pulsaci widma sygnału. f >=f max ω >=ω max Niespełnienie tego warunku skutkue nakładaniem się widm tzw. aliasing patrz obszary w czerwonych elipsach obok i niemożnością odtworzenia sygnału czasu ciągłego na podstawie ego próbek.

47 Energia, moc, widmowa gęstość energii i mocy

48 Energia, moc, widmowa gęstość energii i mocy I Sygnały o skończonym czasie trwania i skończone energii w skończonym przedziale czasu sygnały nieokresowe, bezwzględna całkowalność, moc średnia równa zero, energia sygnału E określona est przez zależność tw. Parsevala : E = f tdt= - - F d Zastosowanie przekształcenia Fouriera Fω - widmowa gęstość energii Ω

49 Energia, moc, widmowa gęstość energii i mocy II Sygnały okresowe Rozwinięcie w szereg Fouriera - okres sygnału F n = / -/ ft exp -ntdt F n - widmo amplitudy F n - widmo mocy moc sygnału P tw. Parsevala energia tracona w ednostce czasu w oporności Ω związki z elektrotechniką P = / -/ f tdt Fn

50 Energia, moc, widmowa gęstość energii i mocy III Sygnały o nieskończonym czasie trwania i nieskończone energii w nieskończonym przedziale czasu Sygnały o nieskończonym czasie trwania np. okresowe - energia nieskończona w nieskończonym przedziale, F z definici nie istniee funkca nie est bezwzględnie całkowalna, można określić moc średnią P uśrednienie za czas obserwaci : P lim / / f t dt = lim - F d d - Φω - widmowa gęstość mocy: w praktyce - ze względu na ograniczoną długość rekordu danych = lim F = F

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

Właściwości sygnałów i splot. Krzysztof Patan

Właściwości sygnałów i splot. Krzysztof Patan Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ

Bardziej szczegółowo

Szereg i transformata Fouriera

Szereg i transformata Fouriera Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 3 Politechnika Gdaoska, 20 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Propagacja w przestrzeni swobodnej (dyfrakcja)

Propagacja w przestrzeni swobodnej (dyfrakcja) Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja

Bardziej szczegółowo

) (2) 1. A i. t+β i. sin(ω i

) (2) 1. A i. t+β i. sin(ω i Ćwiczenie 8 AALIZA HARMOICZA PRZEBIEGÓW DRGAŃ 1. Cel ćwiczenia Analiza przebiegów drgań maszyny i wyznaczenie składowych harmonicznych tych przebiegów,. Wprowadzenie.1. Sygnały pomiarowe W celu przeprowadzenia

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

Temat ćwiczenia. Analiza częstotliwościowa

Temat ćwiczenia. Analiza częstotliwościowa POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLIECHNIKA POZNAŃSKA INSYU ELEKROECHNIKI I ELEKRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki eoretycznej i Stosowanej Laboratorium Podstaw elekomunikacji Ćwiczenie nr 1 emat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

1.1 Wprowadzenie. 1.2 Podstawy matematyczne analizy widmowej Przestrzeń Euklidesowa N-wymiarowa

1.1 Wprowadzenie. 1.2 Podstawy matematyczne analizy widmowej Przestrzeń Euklidesowa N-wymiarowa 1.1 Wprowadzenie Dowolnemu procesowi technologicznemu towarzyszą zawsze zjawiska pasożytnicze w postaci drgań poszczególnych części danego urządzenia i związanej z tym emisji hałasu. Efekty te, w zależności

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów

Laboratorium Przetwarzania Sygnałów PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 7 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 7 1 / 11 Reprezentacja

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera

Dyskretne przekształcenie Fouriera Dyskretne przekształcenie Fouriera Dyskretne przekształcenie Fouriera (ang. Discrete Fourier Transform - DFT) jest jedną z dwóch najbardziej popularnych i wydajnych procedur spotykanych w dziedzinie cyfrowego

Bardziej szczegółowo

Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej

Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej Teoria Synałów Inżynieria Obliczeniowa II rok 208/9 Wykład 0 Wykorzystanie transformacji Fouriera w analizie korelacyjnej Na początek krótkie przypomnienie podstawowych definicji: Funkcja autokorelacji

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo

Podstawy akwizycji i cyfrowego przetwarzania sygnałów

Podstawy akwizycji i cyfrowego przetwarzania sygnałów AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego

Bardziej szczegółowo

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego

Bardziej szczegółowo

Materiały pomocnicze do wykładu

Materiały pomocnicze do wykładu Materiały pomocnicze do wykładu 1 Plan zajęć Podstawowe wiadomości o sygnałach Szeregi Fouriera Ciągła Transformata Fouriera Sygnały cyfrowe Próbkowanie sygnałów. Zjawisko aliasingu Dyskretna i Szybka

Bardziej szczegółowo

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA. ĆWICZENIE NR 15 ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSYCZNYCH DUDNIENIA. I. Cel ćwiczenia. Celem ćwiczenia było poznanie podstawowych pojęć związanych z analizą harmoniczną dźwięku jako fali

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra

Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra Wstęp do metod numerycznych Dyskretna transformacja Fouriera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 01 Problem Majac dany szereg czasowy {x i } N i=1 = {x 1, x,..., x N } (zazwyczaj nieciekawy),

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

Wykład VI Dalekie pole

Wykład VI Dalekie pole Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie

Bardziej szczegółowo

Materiały pomocnicze do wykładu

Materiały pomocnicze do wykładu do wykładu 1 1. Tomasz P. Zieliński - Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań, WKŁ, 2009, 2. Richard G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnałów, WKŁ, 2010 (wyd. 2 rozszerzone),

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

Dyskretne sygnały deterministyczne i analiza widmowa

Dyskretne sygnały deterministyczne i analiza widmowa Wydział Elektryczny Zakład Automatyki LABORATORIUM CYFROWEGO PRZETWARZAIA SYGAŁÓW Ćwiczenie Dyskretne sygnały deterministyczne i analiza widmowa. Cel ćwiczenia Opanowanie umiejętności komputerowego modelowania

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Przetwarzanie sygnału cyfrowego (LabVIEW)

Przetwarzanie sygnału cyfrowego (LabVIEW) Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział: Elektryczny, Kierunek: Informatyka Projekt zaliczeniowy Przedmiot: Systemy akwizycji i przesyłania informacji Przetwarzanie sygnału

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

ELEKTRONIKA. dla Mechaników

ELEKTRONIKA. dla Mechaników ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika

Bardziej szczegółowo