Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów
|
|
- Marcin Staniszewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Laboratorium Metod Optymalizacji 216 Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów 1. Za pomocą funkcji lsqcurvefit dobrać parametry a i b funkcji: Posiadając następujące dane pomiarowe: grupa 1: x = [.4,.8, 1.2, 1.6, 2., 2.3] y = [75, 1, 14, 2, 27, 375] x = [1, -1]; grupa 2: x = [.1,.35,.66,.89, 1.3, 1.9] y = [3.5, 8, 22.5, 48.4, 189.7, ] x = [1, 1]; f(x) = ae bx grupa 3: x = [.1,.25,.56,.79, 1.3, 1.7] y = [1.1618, 1.455, , 3.277, 7.287, ] x = [2.5, 6.3]; grupa 4: x = [.2,.4,.8,.9, 1.3, 1.5] y = [.5637,.6356,.88,.858, 1.97, ] x = [33, 11]; grupa 5: x = [.2,.4,.8, 1, 1.2, 1.4] y = [2.9836, , 9.961, , , ] x = [.3, 11.1]; grupa 6: x = [.11,.22,.33,.55,.77,.99] y = [.19,.247,.349,.4894,.7854, 1.263] x = [8, 18]; grupa 7: x = [1, 1.5, 1.75, 2.45, 3.8, 4.1] y = [.117,.1789,.2213,.412, 1.264, ] x = [5, -4.8]; grupa 8: x = [.8,.95, 1.15, 2.45, 3.33, 4.44] y = [.5595,.6178,.749, , , ] x = [1.6, 3.6]; Opracował: Łukasz Kuczkowski Strona 1
2 Laboratorium Metod Optymalizacji Za pomocą funkcji lsqnonlin znaleźć wartość wektora x, który minimalizuje funkcje postaci: n+3 f(x 1, x 2 ) = (5 + kx x 1 x 2 + e kx 1 + e kx 2 ) 2 k=1 gdzie: n numer grupy, x = [.n,.(n+1)] 3. Wykorzystując metodę najmniejszych kwadratów (funkcja lsqnonlin) dobrać parametry regulatora PID dla modelu ZAD3_MO_LAB3_MODEL.mdl. Nie dokonywać zmian w modelu poza wpisaniem parametrów a 1 i a 2 (patrz pomoc do zadania 3). 4. Rozważany system przedstawia odwrócone wahadło osadzone na ruchomym wózku (rys. 1). Należy zauważyć, że wahadło ustawione na wózku jest niestabilne bez sterowania, a dynamika systemu jest nieliniowa. Jeżeli wózek nie będzie się poruszał, wahadło przewróci się. Celem sterowania jest balansowanie wahadłem w osi x za pomocą siły F przełożonej do wózka. Wahadło porusza się w płaszczyźnie pionowej. Wejście do systemu jest siła F, która porusza wózek w płaszczyźnie poziomej. System jest dwuwymiarowy, ponieważ wyjściem z systemu jest położenie kątowe wahadła θ oraz pozioma pozycja wózka x (patrz rys. 1). Rys 1. Odwrócone wahadło Na potrzeby zadania przyjęto następujące oznaczenia: M masa wózka m masa wahadła b współczynnik tarcia wózka l długość wahadła (od środka ciężkości do wolnego końca) I moment bezwładności wahadła F siła przyłożona do wózka x położenie wózka θ wychylenie kątowe wahadła od pionu (w dół) Opracował: Łukasz Kuczkowski Strona 2
3 Laboratorium Metod Optymalizacji 216 Analiza sił w układzie oraz równania. W celu analizy układu należy wyprowadzić dwa równania opisujące system na podstawie modelu równowagi sił (rys. 2). Rys 2. Rozkład sił w modelu odwróconego wahadła Zsumowanie sił w kierunku poziomym dla wózka daje: Mx + bx + N = F (1) Zsumowaniu sił w kierunku poziomym dla wahadła daje równanie na siłę reakcji N: N = mx + mlθ cosθ mlθ 2 sinθ (2) Po podstawieniu (2) do (1) otrzymujemy pierwsze z równań opisujących system: (M + m)x + bx + mlθ cosθ mlθ 2 sinθ = F (3) W celu otrzymania drugiego równania należy zsumować siły prostopadłe do wahadła: P sinθ + N cosθ mg sinθ = mlθ + mx cosθ (4) Aby pozbyć się z (4) sił P oraz N należy zsumować momenty względem środka ciężkości wahadła: Pl sinθ Nl cosθ = Iθ (5) oraz podstawić (5) do (4) w wyniku czego uzyskamy drugie równanie opisujące system. (I + ml 2 )θ + mgl sinθ = mlx cosθ (6) Ponieważ klasyczna analiza i projektowanie układów sterowania wymaga, aby system był liniowy równania muszą zostać zlinearyzowane. Zakładamy, że system będzie linearyzowany w okolicach pionowej pozycji równowagi θ = π oraz, że wahadło wychyla się tylko w okolicach tego punktu. Zakłada się, że odchylenie wahadła od pionowej pozycji równowagi nie będzie większe niż 2. Niech φ oznacza odchylenie wahadła od pionowej pozycji równowagi, wtedy: Opracował: Łukasz Kuczkowski Strona 3
4 Laboratorium Metod Optymalizacji 216 θ = π + φ (7) Zakładając małe odchylenia od pozycji równowagi możemy przyjąć następujące przybliżenia funkcji nieliniowych w równaniach: cosθ = cos(π + φ) 1 (8) sinθ = sin(π + φ) φ (9) θ 2 = φ 2 (1) Po wprowadzeniu powyższych uproszczeń do funkcji nieliniowych otrzymujemy opis układu w postaci dwóch równać liniowych. Siła F została zastąpiona przez wejście u. (I + ml 2 )φ mglφ = mlx (11) (M + m)x + bx + mlφ = u (12) Zlinearyzowane równia ruchu (11) i (12) po sprowadzeniu do serii równań różniczkowych pierwszego rzędu mogą zostać przedstawione w postaci równań stanu: x x [ φ ] = φ [ 1 (I+ml 2 )b mlb m 2 gl 2 mgl(m+m) x x [ 1 φ] + φ ] [ I+ml 2 ml ] u (13) x y = [ 1 1 ] [ x φ] + [ ] u (14) φ gdzie: M masa wózka kg m masa wahadła kg b współczynnik tarcia wózka N/m/sec l długość wahadła (od środka ciężkości do wolnego końca) m I moment bezwładności wahadła kg m 2 u siła działająca na wózek N x współrzędna położenia wózka m φ kąt wychylenia wahadła (mierzony od pionu) rad g przyspieszenie ziemskie m/s 2 Opracował: Łukasz Kuczkowski Strona 4
5 Laboratorium Metod Optymalizacji 216 Polecenie: Posługując się metoda najmniejszych kwadratów należy wyznaczyć, na podstawie danych pomiarowych, estymaty parametrów m, l, I modelu odwróconego wahadła. Okres próbkowania wielkości mierzonych (u, φ, x) jest równy T =,1 sek. Należy: sformułować problem optymalizacji, Przyjąć: M =,5 b =,1 g = 9,81 rozwiązać zadanie optymalizacji przy użyciu funkcji fminunc, rozwiązać zadanie optymalizacji przy użyciu funkcji fmincon, przyjąć ograniczenia: o m < eps, 2 >, o l < eps, 1 >, o I < eps, 1 >, rozwiązać zadanie optymalizacji przy użyciu funkcji lsqnonlin. Dane pomiarowe dostępne są w pliku dane1_wah_grupa*.mat. Sprawozdanie powinno zawierać: Zadanie 1: Zdefiniowany problem optymalizacji Treść m-pliku z funkcją celu oraz wywołaniem lsqcurvefit Wynik działania funkcji Wykres dopasowanej krzywej z naniesionymi punktami pomiarowymi Zadanie 2: Treść m-pliku z funkcją celu. Treść m-pliku minimalizującego podaną funkcję. Wynik działania funkcji. Zadanie 3: Model ZAD3_MO_LAB3_MODEL.mdl. Wartości przyjętych parametrów a 1 i a 2. Wykres odpowiedzi układu po inicjacji parametrów pid_p, pid_i, pid_d. Dobrane eksperymentalnie wartości początkowe wzmocnień regulatora. Wykres odpowiedzi układu po wprowadzeniu dobranych eksperymentalnie wzmocnień. Treść m-pliku z funkcją function F = uchyb(nastawy). Treść m-pliku przeprowadzającego dobór wzmocnień regulatora PID metodą najmniejszych kwadratów minimalizując uchybu regulacji. Wykres odpowiedzi układu po optymalizacji wzmocnień. Opracował: Łukasz Kuczkowski Strona 5
6 Laboratorium Metod Optymalizacji 216 Przeprowadzić testy działania algorytmu po zamianie parametrów a 1, a 2, tzn. a 1 = a 2 ; a 2 = a 1. Przeprowadzić testy dla różnych punktów startowych pid. Jaki będzie efekt działania algorytmu, jeżeli układ w punkcie startowym jest niestabilny? Wnioski i spostrzeżenia. Zadanie 4: M-plik ze zdefiniowanym modelem odwróconego wahadła Sformułowany problem optymalizacji Rozwiązanie uzyskane każdą z metod Wykres przedstawiający wartości błędu dla każdej próbki Wykres porównujący wyniki pomiarowe wielkości sterowanych od odpowiedzi układu z estymowanymi parametrami. Wnioski i spostrzeżenia (rozważyć sens stosowania ograniczeń) Opracował: Łukasz Kuczkowski Strona 6
7 Laboratorium Metod Optymalizacji 216 Pomoc: Zadanie 1: Patrz: wykład z Metod Optymalizacji Zadanie 2: Funkcja lsqnonlin rozwiązuje nieliniowy problem przybliżania rozwiązań układów nadokreślonych metodą najmniejszych kwadratów, zdefiniowany jako: min f(x) 2 2 = min(f 1 (x) 2 + f 2 (x) f n (x) 2 ) x x Zamiast obliczać wartość f(x) 2 2 (sumę kwadratów), lsqnonlin wymaga funkcji zdefiniowanej w postaci wektorowej: f 1 (x) f f(x) = [ 2 (x) ] f n (x) Podpowiedź: Rozważyć użycie wektora k = [1 : n+3] w celu zapisania funkcji sumy w postaci wektora. Zadanie 3: Zapoznać się z modelem ZAD3_MO_LAB3_MODEL.mdl. Do modelu wprowadzić wartością parametrów bloku transmitancji: a 1, a 2 liczba liter w nazwiskach; a 1 = a 1 ; a 2 = a 1 a 2. Do przestrzeni roboczej Matlab wprowadzić zmienne odpowiadające wzmocnieniom regulatora PID, odpowiednio pid_p = 1, pid_i = 1, pid_d = 1. Przeprowadzić symulację modelu i ocenić jakość działania na podstawie uzyskanego wykresu. Dobrać metodą prób i błędów wstępne nastawy regulatora tak, aby układ był stabilny. Stworzyć funkcję celu: function F = uchyb(nastawy) przypisującą kolejne wartości z wektora nastawy do wzmocnień pid_p, pid_i, pid_d, następnie przeprowadzającą symulację modelu za pomocą polecenia sim z parametrami SrcWorkspace, Current oraz StopTime, 1. Do wektora F zwracać wartości uchybu regulacji. W osobnym m-pliku stworzyć zmienną pid i wprowadzić do niej wcześniej dobrane eksperymentalnie parametry regulatora: pid = [pid_p pid_i pid_d]; Ustawić odpowiednie parametry optymalizacji: options = optimset('algorithm', 'levenberg-marquardt', 'Display', 'off', 'TolX',.1, 'TolFun',.1); Opracował: Łukasz Kuczkowski Strona 7
8 Laboratorium Metod Optymalizacji 216 Wywołać funkcję lsqnonlin dla wcześniej zdefiniowanej funkcji celu uchyb uwzględniają punkt początkowy oraz parametry: pid_out = lsqnonlin(@uchyb, pid, [], [], options); Przypisać otrzymane nastawy do wzmocnień w modelu: pid_p = pid_out(1); pid_i = pid_out(2); pid_d = pid_out(1); Zadanie 4: Niech: λ 1 λ 2 λ = [ ] oznacza wektor poszukiwanych parametrów modelu wahadła; λ 3 u = [u(1), u(2),, u(n)] T wektor wyników pomiarów wielkości sterującej; y = [y(1), y(2),, y(n)] T wektor wyników pomiarów wielkości sterowanych; gdzie: y(k) = [x(k), φ(k)] Schemat procedury poszukiwania wektora λ przedstawia rys.3. Rys 3. Schemat procedury optymalizacji Model odwróconego wahadła przedstawić w postaci równań stanu w Matlab za pomocą polecenia ss. Przekształcić model w postaci równań stanu do transmitancji za pomocą polecenia tf. Opracował: Łukasz Kuczkowski Strona 8
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Modelowanie układów dynamicznych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Regulator liniowo kwadratowy na przykładzie wahadła odwróconego
Regulator liniowo kwadratowy na przykładzie wahadła odwróconego kwiecień 2012 Sterowanie Teoria Przykład wahadła na wózku Dany jest system dynamiczny postaci: ẋ = f (x, u) (1) y = h(x) (2) Naszym zadaniem
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
Dynamika: układy nieinercjalne
Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
1.1 Wahadło anharmoniczne(m5)
10 Mechanika 1.1 Wahadło anharmoniczne(m5) Celem ćwiczenia jest zbadanie drgań anharmonicznych wahadła fizycznego(zależność okresu drgań wahadła od amplitudy jego drgań, bilans energetyczny wahadła). Zagadnienia
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita
Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Sterowanie w programie ADAMS regulator PID. Przemysław Sperzyński
Sterowanie w programie ADAMS regulator PID Przemysław Sperzyński Schemat regulatora K p e t e t = u zad t u akt (t) M = K p e t + K i e t + K d de(t) u zad uakt M K i e t K d de t Uchyb regulacji człony
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 2 Badanie współczynników tarcia suchego 1 Cel ćwiczenia Celem ćwiczenia jest zbadanie współczynników tarcia
Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.
Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zapoznanie z narzędziami optymalizacyjnymi w środowisku MATLAB
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
INSTRUKCJA DO ĆWICZENIA NR 21
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof
v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Wahadło odwrocone (NI Elvis 2) Modelowanie i stabilizacja w dolnym położeniu równowagi.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Wahadło odwrocone (NI Elvis 2) Modelowanie i stabilizacja w dolnym położeniu równowagi.
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO
Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej
Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić
VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)
1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Sterowanie układem zawieszenia magnetycznego
Politechnika Śląska w Gliwicach Wydział: Automatyki, Elektroniki i Informatyki Kierunek: Automatyka i Robotyka Specjalność: Komputerowe systemy sterowania Sterowanie układem zawieszenia magnetycznego Maciej
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Plan wynikowy fizyka rozszerzona klasa 3a
Plan wynikowy fizyka rozszerzona klasa 3a 1. Hydrostatyka Temat lekcji dostateczną uczeń Ciśnienie hydrostatyczne. Prawo Pascala zdefiniować ciśnienie, objaśnić pojęcie ciśnienia hydrostatycznego, objaśnić
Wykład 10. Ruch w układach nieinercjalnych
Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają
przybliżeniema Definicja
Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 2 Badanie współczynników tarcia suchego Cel ćwiczenia Celem ćwiczenia jest badanie współczynników tarcia suchego
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Opracowanie wyników pomiarowych. Ireneusz Mańkowski
I LO im. Stefana Żeromskiego w Lęborku 4 maja 2016 Graficzne opracowanie wyników pomiarów Celem pomiarów jest potwierdzenie związku lub znalezienie zależności pomiędzy wielkościami fizycznymi przedstawienie
Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz
Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę
1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
T =2 I Mgd, Md 2, I = I o
Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
1. Regulatory ciągłe liniowe.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),
Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Estymacja wektora stanu w prostym układzie elektroenergetycznym
Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Narzędzia optymalizacji w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych
Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,
Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Doświadczalne badanie drugiej zasady dynamiki Newtona
Doświadczalne badanie drugiej zasady dynamiki Newtona (na torze powietrznym) Wprowadzenie Badane będzie ciało (nazwane umownie wózkiem) poruszające się na torze powietrznym, który umożliwia prawie całkowite
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Przykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie
rzykład 9.. Wyboczenie słupa o dwóch przęsłach utwierdzonego w undamencie Wyznaczyć wartość krytyczną siły obciążającej głowicę słupa, dla słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku.
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
Zasada prac przygotowanych
1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Modelowanie wybranych zjawisk fizycznych
Ryszard Myhan Modelowanie zjawiska tarcia suchego Suwaka porusza się w poziomych prowadnicach, gdzie x=x(t) oznacza przesunięcie suwaka względem nieruchomej prowadnicy w kierunku zgodnym z kierunkiem siły
Ćwiczenie: "Kinematyka"
Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,
Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym