Aproksymacja funkcji a regresja symboliczna
|
|
- Seweryna Karczewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą lub przybliżeniem funkcji F(x). Przybliżenie takie powoduje pojawienie się błędów i problem oszacowania tych błędów oraz ich wielkość mają istotny wpływ na wybór metody aproksymacji. Gdy zbiór, na którym jest mierzony błąd aproksymacji, jest zbiorem dyskretnym, aproksymacja jest nazywana punktową, gdy jest to przedział - jest nazywana integralną.
2 Aproksymacja funkcji a regresja symboliczna Klasyczne metody aproksymacji funkcji zakładają określony zbiór funkcji bazowych, z których jest budowana poszukiwana funkcja oraz sposób ich wykorzystania (na przykład zbudowanie z nich tak zwanego wielomianu uogólnionego). Z kolei regresja symboliczna jest procedurą indukcji symbolicznej postaci funkcji, która dopasowuje się do danych wejściowych określonych tablicą wartości. Poszukiwana funkcja jest budowana z symboli zdefiniowanych przez badacza bez założenia jej modelu.
3 Potrzeba przeprowadzenia procesu aproksymacji pojawia się, na przykład:
4 Potrzeba przeprowadzenia procesu aproksymacji pojawia się, na przykład: w analizie wyników badań eksperymentalnych,
5 Potrzeba przeprowadzenia procesu aproksymacji pojawia się, na przykład: w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych,
6 Potrzeba przeprowadzenia procesu aproksymacji pojawia się, na przykład: w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
7 Aproksymacja funkcji Aproksymacja jest problemem przybliżania funkcji, polegającym na wyznaczaniu dla danej funkcji F(x) takich funkcji f(x), które w określonym sensie najlepiej przybliżają funkcję F(x) dla danego zbioru wejściowego. Podstawowym problemem aproksymacji funkcji jest określenie jej postaci. Najczęściej przyjmuje się, że poszukiwana funkcja ma postać wielomianu uogólnionego: f (x) = a 0 φ 0 (x) + a 1 φ 1 (x) a n φ n (x), (1) gdzie φ 0, φ 1,..., φ n są funkcjami bazowymi n + 1 wymiarowej podprzestrzeni liniowej Xn+1 przestrzeni X.
8 Aproksymacja funkcji Przy zadanych funkcjach bazowych należy więc wyznaczyć takie wartości współczynników a 0, a 1,..., a n, aby funkcja f(x) spełniała określone warunki, na przykład minimalizowała normę różnicy F (x) f (x). Gdy funkcja F(x) jest określona na dyskretnym zbiorze wartości, rozpatruje się normę: n F = ( [F (x i )] 2 ) 1 2 (2) i=0 Zagadnienie najlepszej aproksymacji przy wybranych funkcjach bazowych φ k (x) sprowadza się do znalezienia wartości współczynników a k takich, aby otrzymać minimum wyrażenia: F (x) (a 0 φ 0 (x) + a 1 φ 1 (x) a n φ n (x)) (3)
9 W zależności od przyjętego sposobu oszacowania błędów aproksymacji wyróżnia się trzy rodzaje aproksymacji:
10 W zależności od przyjętego sposobu oszacowania błędów aproksymacji wyróżnia się trzy rodzaje aproksymacji: aproksymację interpolacyjną,
11 W zależności od przyjętego sposobu oszacowania błędów aproksymacji wyróżnia się trzy rodzaje aproksymacji: aproksymację interpolacyjną, aproksymację jednostajną,
12 W zależności od przyjętego sposobu oszacowania błędów aproksymacji wyróżnia się trzy rodzaje aproksymacji: aproksymację interpolacyjną, aproksymację jednostajną, aproksymację średniokwadratową.
13 W zależności od przyjętego sposobu oszacowania błędów aproksymacji wyróżnia się trzy rodzaje aproksymacji: aproksymację interpolacyjną, aproksymację jednostajną, aproksymację średniokwadratową. W przypadku aproksymacji interpolacyjnej, podobnie jak w zagadnieniu interpolacji, wymaga się, aby dana funkcja, f(x), i funkcja szukana, F(x), przyjmowały dokładnie te same wartości na danym, dyskretnym zbiorze argumentów X.
14 Regresja symboliczna Zadaniem regresji symbolicznej jest znalezienie symbolicznej postaci wyrażenia matematycznego (funkcji), która dokładnie (lub w zadowalającym stopniu) odzwierciedla określone wartości zmiennej zależnej dla podanego zbioru wartości zmiennych niezależnych. Jest to więc, w istocie, zadanie punktowej aproksymacji funkcji, z tym, że w tym przypadku poszukuje się nie tylko zbioru parametrów (współczynników) dla założonego modelu funkcji, lecz również samego modelu. Tym właśnie regresja symboliczna różni się od konwencjonalnej liniowej, kwadratowej, wielomianowej, czy trygonometrycznej aproksymacji funkcji. W odróżnieniu od metod konwencjonalnych, gdzie zakłada się postać modelu rozwiązania, a zadaniem procesu jest znalezienie zbioru warości odpowiednich współczynników modelu, regresja symboliczna znajduje zarówno model, jak i odpowiednie wartości jego parametrów.
15 Regresja symboliczna Tak sformułowane zadanie aproksymacji można zdefiniować poprzez zbiór niezależnych zmiennych wejściowych, Z, oraz zależną zmienną wynikową, y. Celem jest więc przybliżenie wartości zmiennej y używając zmiennych niezależnych Z oraz współczynników W, w taki sposób, aby: x = f (Z, W ) + ɛ, (4) gdzie ɛ reprezentuje szum. W standardowych metodach aproksymacji postać funkcji f jest predefiniowana. Przykładowo, dla aproksymacji liniowej, funkcja f ma założoną postać: f (Z, W ) = w 0 + w 1 x w n x n, (5) gdzie W jest poszukiwanym zbiorem wartości współczynników.
16 Regresja symboliczna W przeciwieństwie do technik klasycznych metody takie, jak Programowanie Genetyczne, niektóre podejścia probabilistyczne, czy Programowanie Mrowiskowe nie zakładają predefiniowanego modelu rozwiązania. Używają za to zbioru funkcji elementarnych, których kombinacja daje w rezultacie pełną postać poszukiwanej funkcji. Na przykład, mając dane funkcje 1-argumentowe h 1,..., h u oraz 2-argumentowe g 1,..., g b, można z ich kombinacji utworzyć wiele różnych wyrażeń, przykładowo: f (Z, W ) = h 1 (g 2 (g 1 (x 3, w 1 ), h 2 (x 1 ))) (6) Oczywiście dopuszczalna jest każda inna poprawna kombinacja zmiennych i funkcji.
17 Regresja symboliczna Zbiory H oraz G zwykle zawierają standardowe funkcje (lub operatory) arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie), trygonometryczne (sinus, cosinus, tangens, itd.), logiczne (not, lub, i) czy logarytmiczne. W związku z tym zastąpienie symboli h i g w funkcji (2) może dać wyrażenie: f (Z, W ) = log((x 3 + w 1 ) sinx 1 ) (7)
18 Regresja symboliczna Tak więc w tym podejściu do aproksymacji funkcji poszukuje się kombinacji zmiennych, funkcji i współczynników tak, aby zminimalizować błąd funkcji dla danego zbioru danych wejściowych. Przy tym zarówno postać i wielkość funkcji, jak i wszystkie jej elementy składowe funkcje elementarne oraz liczba i wartości współczynników są automatycznie znajdowane przez algorytm. Regresja symboliczna ma więc tę przewagę nad podejściem klasycznem do aproksymacji funkcji, że równolegle poszukuje tak postaci funkcji jak i jej parametrów, co jest często kluczowym problemem w analizie danych eksperymentalnych, gdzie określenie z góry poszukiwanego modelu jest bardzo trudne, czy wręcz niemożliwe. Dodatkowo, zbiór funkcji elementarnych może być rozszerzony o zbiór instrukcji dowolnego języka programowania, dzięki czemu problem regresji symbolicznej można uogólnić na zadanie automatycznego programowania automatycznego znajdowania programu, który będzie realizował czynności zdefiniowane w jego specyfikacji.
19 Regresja symboliczna Można więc powiedzieć, że regresja symboliczna jest procedurą indukcji równania symbolicznego, funkcji lub programu, które dopasowują się do danych wejściowych. Poszukiwane wyrażenia są budowane z symboli zdefiniowanego przez badacza alfabetu. Mogą to być symbole matematyczne, lub instrukcje dowolnego języka programowania. Dobór alfabetu jest ściśle związany z rodzajem stawianego problemu. System przeprowadzający regresję symboliczną w każdej iteracji generuje wiele kandydujących rozwiązań f k, które podlegają ocenie na podstawie zbioru danych wejściowych.
20 Istnieje wiele miar dopasowania, wśród których można znaleźć:
21 Istnieje wiele miar dopasowania, wśród których można znaleźć: błąd bezwzględny będący sumą modułów różnic wartości funkcji w zbiorze wejściowym (funkcji poszukiwanej F) i wartości wyliczonej przez bieżące rozwiązanie f k : f P = N i=1 F i f k i (8)
22 Istnieje wiele miar dopasowania, wśród których można znaleźć: błąd bezwzględny będący sumą modułów różnic wartości funkcji w zbiorze wejściowym (funkcji poszukiwanej F) i wartości wyliczonej przez bieżące rozwiązanie f k : f P = N i=1 F i f k i (8) błąd kwadratowy: f P = N (F i fi k ) 2 (9) i=1
23 Istnieje wiele miar dopasowania, wśród których można znaleźć: błąd bezwzględny będący sumą modułów różnic wartości funkcji w zbiorze wejściowym (funkcji poszukiwanej F) i wartości wyliczonej przez bieżące rozwiązanie f k : błąd kwadratowy: średni błąd procentowy: f P = f P = N i=1 F i f k i (8) N (F i fi k ) 2 (9) i=1 APE = 1 N N i=1 F i fi k 100%, (10) F i gdzie N jest liczbą przypadków testowych w zbiorze wejściowym.
24 Regresja symboliczna Tak więc regresja symboliczna może być traktowana jako próba (re)konstrukcji lub przybliżenia funkcji na podstawie danej tabeli wartości zakładając:
25 Regresja symboliczna Tak więc regresja symboliczna może być traktowana jako próba (re)konstrukcji lub przybliżenia funkcji na podstawie danej tabeli wartości zakładając: zbiór operatorów, funkcji i stałych,
26 Regresja symboliczna Tak więc regresja symboliczna może być traktowana jako próba (re)konstrukcji lub przybliżenia funkcji na podstawie danej tabeli wartości zakładając: zbiór operatorów, funkcji i stałych, funkcję oceny jakości przybliżenia.
27 Programowanie genetyczne Struktura elementarnego algorytmu genetycznego jest taka sama, jak typowego programu ewolucyjnego. Przebieg tego algorytmu: Algorytm 1: Elementarny algorytm genetyczny t := 0 Utwórz populację początkową(p(t)) Oceń(P(t)) while (not warunek końca) do begin t := t + 1 P(t) := Selekcja(P(t - 1)) Krzyżuj(P(t)) Mutuj(P(t)) Oceń(P(t)) end {Koniec algorytmu}
28 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że:
29 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że: nie przetwarzają bezpośrednio problemu, lecz jego zakodowaną postać,
30 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że: nie przetwarzają bezpośrednio problemu, lecz jego zakodowaną postać, operują na dużej liczbie rozwiązań (osobników),
31 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że: nie przetwarzają bezpośrednio problemu, lecz jego zakodowaną postać, operują na dużej liczbie rozwiązań (osobników), poszukują rozwiązania metodą próbkowania,
32 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że: nie przetwarzają bezpośrednio problemu, lecz jego zakodowaną postać, operują na dużej liczbie rozwiązań (osobników), poszukują rozwiązania metodą próbkowania, korzystają tylko z funkcji celu, a nie z innych pomocniczych informacji,
33 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że: nie przetwarzają bezpośrednio problemu, lecz jego zakodowaną postać, operują na dużej liczbie rozwiązań (osobników), poszukują rozwiązania metodą próbkowania, korzystają tylko z funkcji celu, a nie z innych pomocniczych informacji, opierają się na probabilistycznym a nie deterministycznym modelu działania.
34 Programowanie genetyczne Podsumowując podstawowe cechy algorytmów genetycznych można powiedzieć że: nie przetwarzają bezpośrednio problemu, lecz jego zakodowaną postać, operują na dużej liczbie rozwiązań (osobników), poszukują rozwiązania metodą próbkowania, korzystają tylko z funkcji celu, a nie z innych pomocniczych informacji, opierają się na probabilistycznym a nie deterministycznym modelu działania. Cechy te odróżniają algorytmy genetyczne od konwencjonalnych technik optymalizacji.
35 Programowanie genetyczne Koza określił pięć wstępnych kroków, jakie należy wykonać, by rozwiązać problem stosując programowanie genetyczne:
36 Programowanie genetyczne Koza określił pięć wstępnych kroków, jakie należy wykonać, by rozwiązać problem stosując programowanie genetyczne: 1. wybór końcówek (symboli terminalnych),
37 Programowanie genetyczne Koza określił pięć wstępnych kroków, jakie należy wykonać, by rozwiązać problem stosując programowanie genetyczne: 1. wybór końcówek (symboli terminalnych), 2. wybór funkcji operujących na końcówkach (dokładniej operatorów, funkcji i instrukcji),
38 Programowanie genetyczne Koza określił pięć wstępnych kroków, jakie należy wykonać, by rozwiązać problem stosując programowanie genetyczne: 1. wybór końcówek (symboli terminalnych), 2. wybór funkcji operujących na końcówkach (dokładniej operatorów, funkcji i instrukcji), 3. określenie funkcji dopasowania,
39 Programowanie genetyczne Koza określił pięć wstępnych kroków, jakie należy wykonać, by rozwiązać problem stosując programowanie genetyczne: 1. wybór końcówek (symboli terminalnych), 2. wybór funkcji operujących na końcówkach (dokładniej operatorów, funkcji i instrukcji), 3. określenie funkcji dopasowania, 4. ustalenie wartości parametrów,
40 Programowanie genetyczne Koza określił pięć wstępnych kroków, jakie należy wykonać, by rozwiązać problem stosując programowanie genetyczne: 1. wybór końcówek (symboli terminalnych), 2. wybór funkcji operujących na końcówkach (dokładniej operatorów, funkcji i instrukcji), 3. określenie funkcji dopasowania, 4. ustalenie wartości parametrów, 5. zdefiniowanie kryterium zakończenia obliczeń.
41 Programowanie genetyczne Programowanie genetyczne Tablica: Wartości poszukiwanej funkcji (zbiór trenujący) Nr Wejście (x) Wyjście (y = x 2 +x 2 ) 1 0,2 0,12 2 0,4 0,28 3 0,6 0,48 4 0,8 0,72 5 1,0 1,00 6 1,2 1,32 7 1,4 1,64 8 1,6 2,08 9 1,8 2, ,0 3,00
42 Programowanie genetyczne Programowanie genetyczne Rysunek: Populacja początkowa dla przykładu programowania genetycznego
43 Programowanie genetyczne Programowanie genetyczne Tablica: Wartości funkcji dopasowania osobników populacji początkowej Nr x y a y b y c y d 1 0,2 0,40 1,04 0,30 0,20 2 0,4 0,80 1,16 0,60 0,40 3 0,6 1,20 1,36 0,90 0,60 4 0,8 1,60 1,64 1,20 0,80 5 1,0 2,00 2,00 1,50 1,00 6 1,2 2,40 2,44 1,80 1,20 7 1,4 2,80 2,96 2,10 1,40 8 1,6 3,20 3,56 2,40 1,60 9 1,8 3,60 4,24 2,70 1, ,0 4,00 5,00 3,00 2,00 f i 8,80 12,20 3,30 3,00
44 Programowanie genetyczne Programowanie genetyczne Rysunek: Zbiór osobników po selekcji populacji początkowej
45 Programowanie genetyczne Programowanie genetyczne Rysunek: Zmutowany osobnik b Rysunek: Wynik skrzyżowania osobników c oraz d
46 Programowanie genetyczne Programowanie genetyczne Tablica: Wartości funkcji dopasowania osobników populacji nr 1 Nr x y a y b y c y d 1 0,2 0,40 1,04 0,30 0,20 2 0,4 0,80 1,16 0,60 0,40 3 0,6 1,20 1,36 0,90 0,60 4 0,8 1,60 1,64 1,20 0,80 5 1,0 2,00 2,00 1,50 1,00 6 1,2 2,40 2,44 1,80 1,20 7 1,4 2,80 2,96 2,10 1,40 8 1,6 3,20 3,56 2,40 1,60 9 1,8 3,60 4,24 2,70 1, ,0 4,00 5,00 3,00 2,00 f i 8,80 12,20 3,30 3,00
47 Programowanie genetyczne Programowanie genetyczne Rysunek: Populacja nr 1
48 Programowanie genetyczne Programowanie genetyczne Tablica: Wartości funkcji dopasowania osobników populacji nr 8 Nr x y a y b y c y d 1 0,2 0,20-0,60 0,12 4,20 2 0,4 0,40-0,20 0,28 1,90 3 0,6 0,60 0,20 0,48 1,27 4 0,8 0,80 0,60 0,72 1,05 5 1,0 1,00 1,00 1,00 1,00 6 1,2 1,20 1,40 1,32 1,03 7 1,4 1,40 1,80 1,68 1,11 8 1,6 1,60 2,20 2,08 1,23 9 1,8 1,80 2,60 2,52 1, ,0 2,00 3,00 3,00 1,50 f i 3,00 2,00 0,00 11,19
49 Programowanie genetyczne Programowanie genetyczne Rysunek: Populacja nr 8
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
DOPASOWYWANIE KRZYWYCH
DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Metody numeryczne Wykład 6
Metody numeryczne Wykład 6 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Interpolacja o Interpolacja
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Interpolacja funkcji
Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,
2. DZIAŁANIA NA WIELOMIANACH
WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
Metody Obliczeniowe w Nauce i Technice
5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy
MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze
Wnioskowanie bayesowskie
Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Excel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Zakres materiału obowiązujący do próbnej matury z matematyki
ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Standardy wymagań maturalnych z matematyki - matura 2010
Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
Równania liniowe i nieliniowe
( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
IV etap edukacyjny. Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Plan wynikowy z przedmiotu: MATEMATYKA
Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)
IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Regresja nieparametryczna series estimator
Regresja nieparametryczna series estimator 1 Literatura Bruce Hansen (2018) Econometrics, rozdział 18 2 Regresja nieparametryczna Dwie główne metody estymacji Estymatory jądrowe Series estimators (estymatory
MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.
Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Optymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla
Spis treści. Literatura 32
Spis treści Aproksymacja funkcji a regresja symboliczna 2. Elementy aproksymacji funkcji............................... 2.. Aproksymacja średniokwadratowa dla dyskretnego zbioru argumentów.... 5.2 Regresja
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1
Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu