b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
|
|
- Aleksandra Kucharska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń z atomami moderatora, czyli substancji spowalniającej. a) Jaki ułamek enerii kinetycznej traci neutron w zderzeniu z nieruchomym jądrem o masie m? b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 06 dla ołowiu i 1 dla węgla. Opisywany w zadaniu przypadek jest zderzeniem sprężystym dlatego spełnione są tu dwie zasady pędu i energii: v ( m n + m n m { mnv 1 = mnv + m v ) = 4v1 m 4 n + 4 m m n v 1 = m n v + m v m n v 1 v m ( ( m n m4 n m = mn v 1 m n m n ) m ) v 1 = 4m nv 1 v 1 = 0 Otrzymamy dwa rozwiązania: v = v 1 m n m m +m n oraz v = v 1 Przy czym drugie należy odrzucić jako niefizyczne. k = k = E 1 E E 1 m nv1 mnv m nv1 ( ) v k = 1 1 v 1
2 ( mn m k = 1 m + m n k = 4m nm (m + m n ) Po podstawieniu danych z podpunktu b otrzymamy k P b = 0, 019 k C = 0, 84 ) Zadanie Dwie kule metalowe, są zawieszone na pionowych linkach i w chwili początkowej ledwie się ze sobą stykają. Kula 1 o masie m 1 = 0 g zostaje odchylona w lewo, przy czym wznosi się w pionie na wysokość h = 8 cm, a następnie zostaje puszczona swobodnie. Po powrocie do położenia początkowego zderza się ona sprężyście z kulą o masie m = 75 g. Ile wynosi prędkość kuli 1 tuż po zderzeniu? Zadanie jest bardzo podobne do poprzedniego. Tu także mamy zderzenie sprężyste więc łatwo można obliczyć, że prędkość kuli pierwszej po zderzeniu wynosi: ( ) v 1 m1 m = v 1 m 1 + m Z zasady zachowania energii mechanicznej mogę wyznaczyć v 1 więc Zatem ostatecznie otrzymamy m 1 v 1 v 1 = Po podstawieniu danych liczbowych = m 1 gh gh ( ) v 1 m1 m = gh m 1 + m v 1 = 0, 54 m/s
3 Zadanie Skoczek do wody, którego masa wynosi 60 kg, ma tuż przed odbiciem od trampoliny prędkość o wartości m/s, skierowaną pionowo w dół. Tuż po odbiciu się od trampoliny, 1, s później, skoczek ma prędkość o wartości 5 m/s, skierowaną pod katem 0 o do pionu. Oblicz wartość średniej siły działającej na skoczka w czasie odbicia od trampoliny. F = p t F = m v v 1 t Zapiszmy współrzędne wektorowe: v = v 1 = [0, ] [ 5, 5 ] czyli zatem v = v v 1 = v = v = 5 [ 5 ], ) 4 + (
4 v = więc zmiana prędkości wynosi = 7, 74 v = 7, 74 m/s Na tej podstawie można wyznaczyć wartość średniej siły jako F = m v t daje to po podstawieniu wartości liczbowych siłę F = 87, 4 N Zadanie 4 Golifista uderza piłkę nadając jej prędkość początkową o wartości 50 m/s skierowaną ku górze pod kątem 0 o do poziomu. Masa piłki wynosi 46 g, a kij stykał się z nią przez 1,7 ms. Wyznacz: impuls siły działającej na piłkę oraz średnia siłę działającą na piłkę od strony kija. Impuls siły działającej na piłkę to F = mv t Całkowita siła działająca na piłkę w chwili uderzenia to gdzie Q oznacza siłę ciężkości. Zatem F = F k + Q F k = F Q Q = [0, Q] [ F = F, 1 ] F 4
5 F k = [ [ F k = F, 1 ] F + Q mv t, 1 mv + mg t Zatem wartość siły z jaką działał kij wynosi F k = Po podstawieniu danych Zadanie 5 4 ( mv t ] ) ( ) 1 mv + + mg t F = N F k = N W spoczywający na stole klocek o masie 0,5 kg uderzył poruszający się poziomo z prędkością 500 m/s pocisk o masie 0,01 kg i utkwił w nim na skutek czego klocek zaczął się poruszać. Jaką drogę przebył klocek do zatrzymania się jeżeli współczynnik tarcia klocka o podłoże wynosi 0,? Zderzenie jest niesprężyste dlatego spełniona jest tu jedynie zasada zachowania pędu. Wypisanie jej pozowli obliczyć prędkość klocka v k zaraz po zderzeniu: m p v p = (m k + m p )v k m p v k = v p m k + m p 5
6 Na klocek działa siła tarcia F T = mgf. Siła ta sprawia, że ruch jest jednostajnie opóźniony a drogę przebytą w tym ruchu wyraża wzór s = at gdzie a wyznaczamy z II zasady dynamiki Newtona F = ma w tym przypadku F = F T czyli zatem a = F m a = mgf m a = gf Nie jest jeszcze znany czas ruchu t, ale łatwo można go wyznaczyć z definicji przyspieszenia a = v k t t = v k a Podstawiając tak obliczony czas t do wzoru na drogę s uzyskamy s = s = v k a m pv p gf(m k + m p ) Po podstawieniu wartości i obliczeniu uzyskamy s = 5, 5 m Zadanie 6 Człowiek o masie m = 60 kg biegnący z prędkością v = 8 m/s dogania wózek o masie M = 90 kg jadący z prędkością v w = 4 m/s i wskakuje na ten wózek. Z jaką prędkością będzie się poruszał się wózek z człowiekiem? (Rozważyć oba przypadki) 6
7 Można rozważyć dwie sytuacje, gdy człowiek i wózek poruszają się w tę samą stronę lub gdy zbliżają się do siebie z przeciwnych stron. a) człowiek i wózek poruszają się w tę samą stronę m cz v cz + m w v w = (m cz + m w )v v = m czv cz + m w v w m cz + m w v = 5, 6 m/s b) człowiek i wózek zbliżają się z przeciwnych stron v = m czv cz m w v w m cz + m w v = 0, 8 m/s Prędkość człowieka oznaczona była jako dodatnia, ten sam znak ma prędkość wózka z człowiekiem. Oznacza to, że ruch ten odbywa się w tym samym kierunku co ruch biegnącego człowieka. 7
Zakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź
Bardziej szczegółowoDynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Bardziej szczegółowoĆwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Bardziej szczegółowoFizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv
Bardziej szczegółowoBlok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Bardziej szczegółowoPrzykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Bardziej szczegółowoFIZYKA Kolokwium nr 3 (e-test)
FIZYKA Kolokwium nr 3 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Z balkonu znajdującego się na wysokości 11m nad ziemią wypadła poduszka o
Bardziej szczegółowoŚrodek masy Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu.
Środek masy 125. Na rysunku przedstawiono ułożenie czterech ciał o jednakowej masie równej 1kg. Wyznacz położenie środka masy tego układu. 126. Dwa klocki poruszają się po płaskim stole wzdłuż tej samej
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna
Bardziej szczegółowo(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
Bardziej szczegółowoZasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Bardziej szczegółowo14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoPOWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
Bardziej szczegółowoZadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Bardziej szczegółowoWe wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co
Bardziej szczegółowoErrata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania
1 Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania (mimo usunięcia zadań w odpowiedziach zachowano numerację z pierwszego wydania) s. 32 10 wiersz od góry x 2 = d x 2 = d + v 2t 1 16 wiersz
Bardziej szczegółowoMateriały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Bardziej szczegółowoMateriały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
Bardziej szczegółowo3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Bardziej szczegółowoZadania z zasad zachowania
Zadania z zasad zachowania Maciej J. Mrowiński 23 kwietnia 2010 Zadanie ZZ1 Ciało zjeżdża bez tarcia ze szczytu gładkiego wzniesienia o wysokości H. Dla jakiej wysokości h, przy której wzniesienie się
Bardziej szczegółowov 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Bardziej szczegółowoKONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się
Bardziej szczegółowoPęd układu. r r r. Zderzenia oraz zasada zachowania pędu
Praca i energia. Zasada zachowania energii mechanicznej. Środek masy. Lista zadań nr 3 dla potoku A i B SKP oraz kierunku IŚ Wydziału IŚ PWr; rok ak. 2008/09 Praca Uwaga: Zadania w tej części rozwiązujemy
Bardziej szczegółowoMECHANIKA 2. Teoria uderzenia
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia Prowadzący: dr Krzysztof Polko DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają
Bardziej szczegółowoBryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
Bardziej szczegółowoZad. 5 Sześcian o boku 1m i ciężarze 1kN wywiera na podłoże ciśnienie o wartości: A) 1hPa B) 1kPa C) 10000Pa D) 1000N.
Część I zadania zamknięte każde za 1 pkt Zad. 1 Po wpuszczeniu ryby do prostopadłościennego akwarium o powierzchni dna 0,2cm 2 poziom wody podniósł się o 1cm. Masa ryby wynosiła: A) 2g B) 20g C) 200g D)
Bardziej szczegółowoWPPT; kier. Inż. Biom.; lista zad. nr 4 pt.
WPPT; kier. Inż. Biom.; lista zad. nr 4 pt.: Analizowanie i rozwiązywanie zadań/problemów dotyczących zderzeń sprężystych i niesprężystych. z wykorzystaniem praw zachowania energii kinetycznej i pędu;
Bardziej szczegółowoPodstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Bardziej szczegółowoAnaliza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Bardziej szczegółowoWykład 7: Układy cząstek. WPPT, Matematyka Stosowana
Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?
Bardziej szczegółowoPOWTÓRKA PRZED KONKURSEM CZĘŚĆ 5 B
DO ZDOYCI 30 PUNKTÓW POWTÓRK PRZED KONKURSEM CZĘŚĆ 5 TE ZDNI Z ETPU SZKOLNEGO KONKURSU GIMNZJLNEGO YŁY KIEDYŚ UŻYTE 1. W pierwszej sekundzie ruchu jednostajnego rowerzysta przebył drogę 3 m. W trzeciej
Bardziej szczegółowoAnaliza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Bardziej szczegółowoKołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
Bardziej szczegółowoPRACOWNIA FIZYCZNA I
Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna
Bardziej szczegółowoPęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]
Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.
Bardziej szczegółowoZestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
Bardziej szczegółowoWOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE SZKOLNE
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE
Bardziej szczegółowoZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów
Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 06 Vademecum Fizyka MATURA 07 VADEMECUM Fizyka Zacznij przygotowania
Bardziej szczegółowoI. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Bardziej szczegółowoZasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku
Bardziej szczegółowoWykład 2. podstawowe prawa i. Siły w przyrodzie, charakterystyka oddziaływań. zasady. Praca, moc, energia. 1. Jakie znamy siły???
Wykład 2. Siły w przyrodzie, charakterystyka oddziaływań, zasady. Praca, moc, energia podstawowe prawa i Siły w przyrodzie, charakterystyka oddziaływań 1. Jakie znamy siły??? 2. Czym jest oddziaływanie??
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Bardziej szczegółowoWektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Bardziej szczegółowoZadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
Bardziej szczegółowoPrzykładowe zdania testowe I semestr,
Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ
Bardziej szczegółowoPodstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Bardziej szczegółowoMateriał powtórzeniowy dla klas pierwszych
Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną
Bardziej szczegółowoWOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014. Imię i nazwisko:
(pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP I SZKOLNY Informacje:
Bardziej szczegółowoZadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)
KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości
Bardziej szczegółowoPraca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Bardziej szczegółowoFizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.
Bardziej szczegółowoPierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Bardziej szczegółowoMiędzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ
ZDUŃSKA WOLA 16.04.2014R. Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ Kod ucznia Instrukcja dla uczestnika konkursu 1. Proszę wpisać odpowiednie litery (wielkie) do poniższej tabeli
Bardziej szczegółowoPraca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Bardziej szczegółowoGrupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu
Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Bardziej szczegółowo14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. Obejmuje u mnie działy od początku do POLE GRAWITACYJNE
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Obejmuje u mnie działy od początku do POLE GRAWITACYJNE 01 WEKTORY, KINEMATYKA. RUCH JEDNOSTAJNY
Bardziej szczegółowoWOJEWÓDZKI KONKURS FIZYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ SZKOLNY 12. 11. 2013 R. 1. Test konkursowy zawiera 23 zadania. Są to zadania
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów
Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM
Bardziej szczegółowoMECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Bardziej szczegółowoRodzaj/forma zadania Uczeń odczytuje przebytą odległość z wykresów zależności drogi od czasu
KARTOTEKA TESTU I SCHEMAT OCENIANIA - gimnazjum Nr zadania Cele ogólne 1 I. Wykorzystanie wielkości fizycznych 2 I. Wykorzystanie wielkości fizycznych 3 I. Wykorzystanie wielkości fizycznych 4 I. Wykorzystanie
Bardziej szczegółowoEGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MFA-R1_1P-072 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Bardziej szczegółowoI zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub
Bardziej szczegółowoKONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,
Bardziej szczegółowoPodstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Bardziej szczegółowoFIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Bardziej szczegółowoWykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Bardziej szczegółowoPęd. Jan Masajada - wykłady z podstaw fizyki
Temat IV Pęd UKŁAD IZOLOWANY p p =0 po pewnej chwili p1 k p2 k p1 k+ p2 k=0 Działo zostało wymierzone pod kątem = 30 0 do podłoża. W pewnej chwili wystrzelono pociski o masie 30kg z prędkością początkową
Bardziej szczegółowoETAP I - szkolny. 24 listopada 2017 r. godz
XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Bardziej szczegółowoPraca domowa nr 3. WPPT, kierunek IB., gdyby praca na rzecz siły tarcia wyniosłaby 10% początkowej wartości energii mechanicznej?
Praca domowa nr 3. WPPT, kierunek IB. Grupa1. Praca i energia mechaniczna, tw. o pracy i energii, zasada zachowania energii mechanicznej. Równania ruchu (cd). 1. A) Z wysokości 11,5 m spadł pionowo lecący
Bardziej szczegółowoFIZYKA Kolokwium nr 2 (e-test)
FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców
Bardziej szczegółowo05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.
Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const
Bardziej szczegółowoKONKURS FIZYCZNY - etap szkolny ZESTAW ZADAŃ
ZESTW ZDŃ 1. W pierwszej sekundzie ruchu jednostajnego rowerzysta przebył drogę 3 m. W trzeciej sekundzie tego ruchu przebyta przez niego droga wynosiła. 9 m. 1 m C. 6 m D. 3 m 2. Gdy ruch jest jednostajnie
Bardziej szczegółowoDynamika ruchu obrotowego
Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.
Bardziej szczegółowo09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoZasady dynamiki przypomnienie wiadomości z klasy I
Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem
Bardziej szczegółowoŁamigłówka. p = mv. p = 2mv. mv = mv + 2mv po. przed. Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0! Jak to jest możliwe?
Łamigłówka p = mv p = 2mv p = mv przed mv = mv + 2mv po Mur zyskuje pęd, ale jego energia kinetyczna wynosi 0 Jak to jest możliwe? Zastosowanie zasady zachowania pędu - zderzenia 2. Zderzenia elastyczne
Bardziej szczegółowoDoświadczalne badanie drugiej zasady dynamiki Newtona
Doświadczalne badanie drugiej zasady dynamiki Newtona (na torze powietrznym) Wprowadzenie Badane będzie ciało (nazwane umownie wózkiem) poruszające się na torze powietrznym, który umożliwia prawie całkowite
Bardziej szczegółowoĆwiczenie: "Kinematyka"
Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu
Bardziej szczegółowoZasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
Bardziej szczegółowoZ przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).
Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną
Bardziej szczegółowoA = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z.
Ćwiczenia rachunkowe z fizyki dla I roku Transport Morski. Zestaw zadań nr 1. Zestaw 1. Wielkości i jednostki. Wektory. Zapisać w jednostkach układu SI: 2 doby; 14 minut;2,5 godz.; 3 000 lat; 3 MM (mile
Bardziej szczegółowoDoświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F Praca i energia Praca
Bardziej szczegółowoDYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Bardziej szczegółowo09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Bardziej szczegółowoWyznaczenie współczynnika restytucji
1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących
Bardziej szczegółowoFIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Zadanie 1. (0 1) Obszar standardów Opis wymagań Obliczanie prędkości
Bardziej szczegółowoFIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów
Bardziej szczegółowoZasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Bardziej szczegółowoTreści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Bardziej szczegółowo