Ć W I C Z E N I E N R E-15
|
|
- Eleonora Bukowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ GAUSSA
2 . Zagadnienia do przestudiowania 1. Magnetyzm Ziemi.. Wielkości charakteryzujące ziemskie pole magnetyczne: natężenie pola magnetycznego, moment magnetyczny, składowe pola magnetycznego Ziemi, inklinacja, deklinacja. 3. Ruch drgający, równanie ruchu harmonicznego. 4. Moment bezwładności bryły sztywnej. 5. Metoda Gaussa wyznaczania składowej poziomej natężenia pola magnetycznego Ziemi.. Wprowadzenie teoretyczne Powszechnie znany jest fakt, że w przestrzeni wokół Ziemi istnieje pole magnetyczne. Pole to związane jest z istnieniem centralnego rdzenia Ziemi, jednak mechanizm jego powstawania nie został dotychczas jednoznacznie wyjaśniony. Oś magnetyczna Ziemi nie pokrywa się z jej osią obrotu - jest odchylona o około 15. Południowy biegun magnetyczny leży na półkuli północnej, a północny biegun magnetyczny znajduje się na półkuli południowej. Pole magnetyczne Ziemi charakteryzuje natężenie pola. Wektor natężenia pola magnetycznego tworzy z płaszczyzną poziomą kąt J, zwany inklinacją magnetyczną, czyli nachyleniem magnetycznym. Rzut wektora natężenia pola magnetycznego na płaszczyznę poziomą nazywamy składową poziomą. Kierunek składowej poziomej tworzy z południkiem geograficznym kąt D, zwany deklinacją magnetyczną lub zboczeniem magnetycznym. Tak więc podstawowymi wielkościami charakteryzującymi pole magnetyczne Ziemi są: składowa pozioma wektora natężenia pola magnetycznego, inklinacja J i deklinacja D, co ilustrują rysunki 1-3. Do badania ziemskiego pola magnetycznego służą dwa proste przyrządy: igła magnetyczna busoli osadzona na osi pionowej i igła inklinacyjna zrównoważona grawitacyjnie na osi poziomej. gła inklinacyjna, która może obracać się w płaszczyźnie pionowej, wskazuje kierunek wektora natężenia pola magnetycznego ziemskiego. Rys. 1. Elementy magnetyzmu ziemskiego w przestrzeni
3 Rys.. Kąt inklinacji ziemskiego pola magnetycznego Rys. 3. Kąt deklinacji ziemskiego pola magnetycznego gła magnetyczna busoli przyjmuje w polu magnetycznym ziemskim kierunek składowej poziomej wektora magnetycznego. Natężenie pola magnetycznego Ziemi można łatwo obliczyć, znając wartość składowej poziomej i kąta inklinacji J = /cosj Za pomocą tych wielkości można również wyznaczyć składową pionową n n = tgj Metoda pomiaru Natężenie pola magnetycznego w dostatecznie dużej odległości od układu o określonym momencie magnetycznym p (obwód z prądem, magnes trwały) wynosi (rys. 4) p 3cos 1 4 r 3 (1) 3
4 Rys. 4. Natężenie pola magnetycznego wytworzonego przez moment magnetyczny p W sposób analogiczny jak w przypadku pola elektrycznego określa się moment mechaniczny, działający na dipol magnetyczny umieszczony w polu magnetycznym o natężeniu M p () Jeżeli magnes sztabkowy (lub w kształcie pręta) zawiesimy na cienkiej długiej nici tak, aby zajmował położenie poziome, to ustawi się on równolegle do południka magnetycznego. Po wychyleniu magnesu z położenia równowagi (w płaszczyźnie poziomej) na magnes działają siły skręcające o momencie równym M p sin (3) gdzie: - składowa pozioma pola magnetycznego Ziemi, - kąt wychylenia z położenia równowagi. W wyniku działania momentu mechanicznego zaobserwujemy drgania skrętne magnesu. Zaniedbując tarcie i sprężystość nici, można zapisać d p sin (4) dt gdzie - moment bezwładności magnesu. Dla małych kątów d p dt Podstawiając ω = p /, otrzymamy d dt Równanie to jest różniczkowym równaniem drgań harmonicznych. Rozwiązanie tego równania ma postać 4
5 cos t (5) gdzie jest amplitudą drgań. Okres drgań wynosi T p (6) Moment bezwładności magnesu w kształcie pręta względem osi przechodzącej przez punkt ciężkości i prostopadłej do długości wynosi ml 1 (7) gdzie: l - długość magnesu, m - masa magnesu. W równaniu (6) występuje jeszcze nieznana wielkość momentu magnetycznego p. Można jednak wykonać inne pomiary, które pozwolą na znalezienie związku między i p, a więc na wyznaczeniu bez obliczania momentu magnetycznego p. Do przeprowadzenia pomiarów służy listwa z podziałką i busola umocowana na jednym z jej końców. Rys. 5. Zasada pomiaru dla listwy pomiarowej ustawionej prostopadle do południka magnetycznego Za pomocą busoli listwę należy ustawić prostopadle do południka magnetycznego. Następnie na listwę należy położyć magnes tak, jak to pokazano na rysunku 5. gła magnetyczna wychyli się o pewien kąt β, który można odczytać za pomocą podział- ki busoli. Jak wynika z rysunku tg M/ (8) gdzie M - natężenie pola magnetycznego magnesu w miejscu, w którym znajduje się busola. Zakładając, że μ = 1 i α =, równanie (1) można zapisać w postaci p (9) M 3 r 5
6 Rys. 6. Zasada pomiaru dla listwy pomiarowej ustawionej równolegle do południka magnetycznego Na podstawie równań (6), (8), (9) otrzymamy Tr rtg (1) Aby wyznaczyć, należy do wzoru (1) podstawić wielkości r, T i tgβ, otrzymane w wyniku pomiarów, oraz obliczoną wartość momentu bezwładności. Należy zaznaczyć, że wzór w takiej postaci jest słuszny tylko w układzie S. Pomiary można również przeprowadzić, ustawiając listwę równolegle, a magnes prostopadle do południka magnetycznego. Uwzględniając, że μ = 1 i α = 9, równanie (1) w tym przypadku przyjmuje postać p (11) M 3 4 r Podstawiając (11) do równania (8), otrzymujemy następujące wyrażenie: rt rtg (1). Zestaw pomiarowy Magnes w kształcie pręta zawieszony na nici, stoper, listwa z podziałką i busolą umocowaną na jednym z jej końców. 6
7 V. Schemat układu pomiarowego S N Rys. 7 V. Przebieg ćwiczenia 1. Wyprowadzić magnes z położenia równowagi w kierunku poziomym o mały kąt (ok. 1 ).. Wyznaczyć okres drgań skrętnych magnesu - w tym celu mierzymy czas odpowiadający 1 pełnym drganiom magnesu (t = 1 T). 3. Pomiary okresu drgań skrętnych powtórzyć dziesięciokrotnie. 4. Wyniki pomiarów wpisać do tabeli pomiarów. 5. Ustawić listwę oraz magnes prostopadle do południka magnetycznego i zmierzyć kąt β dla dwóch odległości r magnesu od busoli (rys. 5) (r - przyjąć jako odległość od obudowy busoli do końca klocka, na którym umieszczony jest magnes). UWAGA! Aby zapobiec błędom spowodowanym ewentualnym niepokrywaniem się magnetycznej osi busoli z jej osią geometryczną, należy odczytać wartości kątów, o jakie wychylają się oba końce igły busoli. 6. Aby zmniejszyć błąd związany z niedokładnym ustawieniem busoli, magnes obracamy o 18 wokół osi pionowej i powtarzamy pomiar. Z otrzymanych wyników obliczamy wartość średnią kąta β przy danej odległości magnesu od busoli. 7. Ustawić listwę równolegle, a magnes prostopadle w stosunku do południka magnetycznego (rys. 6). Wykonać pomiary tak jak w punktach 5 i Wyniki pomiarów wpisać do tabeli pomiarowej. 7
8 V. Tabela pomiarów Lp. t [s] T [s] T śr [s] Ustawienie listwy Odległość r [m] Kąt [deg] Kąt β śr [deg] tgβ śr śr [A/m] [A/m] prostopadłe równoległe V. Opracowanie wyników pomiarowych 1. Obliczyć wartość średniego okresu drgań skrętnych T śr [s] i wpisać do tabeli.. Obliczyć składową poziomą natężenia pola magnetycznego Ziemi dla prostopadłego ustawienia listwy, korzystając ze wzoru Tr rtg ml gdzie: - moment bezwładności magnesu, m = 76,97 g - masa magnesu, l = 14, cm - długość 1 magnesu. Przenikalność magnetyczna próżni: μ = 4π 1 7 Vs. A m 3. Obliczyć składową poziomą natężenia pola magnetycznego Ziemi dla równoległego ustawienia listwy ze wzoru rt rtg 4. Obliczyć wartość średnią śr. 5. Przeprowadzić rachunek błędów metodą różniczki zupełnej. Przyjąć Δr =,1 m, β = 3, T obliczyć metodą Gaussa. 6. Przeprowadzić dyskusję otrzymanych wyników pomiarowych. Literatura 1. alliday D., Resnick R., Walker J., Fizyka, t. 3, Wydawnictwo Naukowe PWN, Warszawa 3.. Lech J., Opracowanie wyników pomiarów w laboratorium podstaw fizyki, Wydawnictwo Wydziału nżynierii Procesowej, Materiałowej i Fizyki Stosowanej PCz, Częstochowa Nozdriew W.F., Ćwiczenia laboratoryjne z fizyki ogólnej, PWN, Warszawa Piekara A., Elektryczność i magnetyzm, PWN, Warszawa Szczeniowski S., Fizyka doświadczalna, cz., Elektryczność i magnetyzm, PWN, Warszawa
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Ć W I C Z E N I E N R E-8
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOOG ATERAŁÓW POTECHNKA CZĘSTOCHOWSKA PRACOWNA EEKTRYCZNOŚC AGNETYZU Ć W C Z E N E N R E-8 NDUKCJA WZAJENA Ćwiczenie E-8: ndukcja wzajemna. Zagadnienia do przestudiowania.
Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Ćwiczenie 41. Busola stycznych
Ćwiczenie 41. Busola stycznych Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Zapoznanie się z budową i działaniem busoli, wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Wprowadzenie
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
Piotr Janas, Paweł Turkowski Zakład Fizyki, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 30
Piotr Janas, Paweł Turkowski Zakład Fizyki, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 30 POMIAR NATĘŻENIA ZIEMSKIEGO POLA MAGNETYCZNEGO Kraków, 08.02.2016 -2- CZĘŚĆ TEORETYCZNA ZAKRES
Ziemskie pole magnetyczne
Ćwiczenie nr 27 Ćwiczenie nr 08 (27). Pomiar natężenia pola magnetycznego ziemskiego. Ziemskie pole magnetyczne Cel ćwiczenia. Wyznaczenie indukcji magnetycznej ziemskiego pola magnetycznego. Zagadnienia
Ć W I C Z E N I E N R E-5
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOLOG MATERAŁÓW POLTECHNKA CZĘSTOCHOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-5 POMAR POJEMNOŚC KONDENSATORA METODĄ ROZŁADOWANA . Zagadnienia do
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Piotr Janas, Paweł Turkowski Zakład Fizyki IChF, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 30
Piotr Janas, Paweł Turkowski Zakład Fizyki IChF, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 30 POMIAR NATĘŻENIA ZIEMSKIEGO POLA MAGNETYCZNEGO Kraków, 25.09.2015 SPIS TREŚCI CZĘŚĆ
Rys. 1Stanowisko pomiarowe
ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego
Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego ĆWICZENIE 10 Obowiązkowa znajomość zagadnień Ziemskie pole magnetyczne, wielkości opisujące pola magnetyczne i elektryczne (tj.: wektor
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów.
Zad. M 04 Temat: PRACOWA FZYCZA nstytut Fizyki US Wyznaczanie momentu bezwładności brył metodą wahadła fizycznego. Doświadczalne potwierdzenie twierdzenia Steinera. Cel: zapoznanie się z ruchem drgającym
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH
WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:
Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego
Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
Rys. 1. Schemat układu pomiarowego do wyznaczania składowych pola magnetycznego Ziemi
Ćwiczenie 5. Wyznaczanie pola magnetycznego iemi. Literatra. Sz.Szczeniowski, izyka dośw., cz., PWN, W-wa, rozdz. V.. Ćwiczenia laboratoryjne z fizyki. Cz praca zbiorowa pod redakcją. Krk i J. Typka. Wydawnictwo
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
T =2 I Mgd, Md 2, I = I o
Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:
wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Ćwiczenie nr 41: Busola stycznych
Wydział PRACOWNA FZYCZNA WFiS AGH mię i nazwisko 1.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 41: usola stycznych
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO
Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego
Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem
Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami?
1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami? A. wszystkie odpadną B. odpadną tylko środkowe C. odpadną tylko skrajne D.
LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
KOOF Szczecin: www.of.szc.pl
3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
LABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.
MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Ćw. 32. Wyznaczanie stałej sprężystości sprężyny
0/0/ : / Ćw.. Wyznaczanie stałej sprężystości sprężyny Ćw.. Wyznaczanie stałej sprężystości sprężyny. Cel ćwiczenia Sprawdzenie doświadczalne wzoru na siłę sprężystą $F = -kx$ i wyznaczenie stałej sprężystości
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 4 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA 1. Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem pierwszej
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW
Józef Zawada Instrukcja do ćwiczenia nr P12 Temat ćwiczenia: POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Cel ćwiczenia Celem niniejszego ćwiczenia jest
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE
PRACOWNA FZYCZNA DLA UCZNÓW WAHADŁA SPRZĘŻONE W ćwiczeniu badać będziemy drgania dwóch wahadeł sprzężonych za pomocą sprężyny. Wahadła są jednakowe (mają ten sam moment bezwładności, tę samą masę m i tę
1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.
. Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem
BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ
ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny
D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
DIPOLOWY MODEL SERCA
Ćwiczenie nr 14 DIPOLOWY MODEL SERCA Aparatura Generator sygnałów, woltomierz, plastikowa kuweta z dipolem elektrycznym oraz dwiema ruchomymi elektrodami pomiarowymi. Rys. 1 Schemat kuwety pomiarowej Rys.
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Wykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
1. Podstawy teorii magnetyzmu
1. Podstawy teorii magnetyzmu 1.1 Pole magnetyczne i jego charakterystyka Pole magnetyczne przyciąga lub odpycha ciała namagnesowane. Siła oddziaływania F (przyciągania lub odpychania) dwóch biegunów magnetycznych
III. Literatura: J. L. Kacperski, I Pracownia fizyczna.
Pomiar składowej poziomej indukcji ziemskiego pola magnetycznego metodą oscylacji igły magnetycznej.. Cel ćwiczenia: wyznaczenie wartości składowej poziomej indukcji ziemskiego pola magnetycznego.. Przyrządy:
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia