Zadanie 1 Zadanie 2 Zadanie 3 Zadanie 4
|
|
- Małgorzata Lis
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1 Zamkowa zbrojownia produkuje dwa rodzaje halabard: A i B, które stały się jej przebojem eksportowym. Jednostkowy zysk osiągany na halabardzie A równa się 1 dukatowi, a na halabardzie B 3 dukatom. W procesie produkcji wykorzystywane są dwa surowce o kluczowym znaczeniu: stal i drewno. Ich zużycie w kg na jedną halabardę A oraz B a także limity zapasów w magazynie zawiera tabela: Halabarda A Halabarda B Zapas [t] Stal Drewno Podczas produkcji stali zużywa się rudę. Normy technologiczne wymagają 2 jednostek tego surowca na każdą sztukę A oraz na każdą sztukę B. Należy zużyć co najmniej jednostek rudy, aby uzyskać odpowiednią stal. Opracować plan produkcji zapewniający maksymalny zysk ze sprzedaży obu rodzajów halabard do ościennych księstw. O ile przekroczone zostanie zużycie rudy? Zadanie 2 (Jędrzejczyk, Kukuła) Rafineria ropy naftowej kupuje do przerobu dwa gatunki ropy: R1 i R2 w cenach odpowiednio: 7 i 14 zł za jednostkę przerobową. Proces technologiczny, odbywający się w wieży rektyfikacyjnej daje trzy produkty: benzynę, olej napędowy i odpady. Z jednostki przerobowej ropy R1 otrzymujemy 16 hl benzyny, 20 hl oleju napędowego i 24 hl odpadów. Z jednostki przerobowej ropy R2 otrzymujemy 48 hl benzyny, 10 hl oleju napędowego i 14 hl odpadów. Ile należy kupić ropy R1 i R2, aby wyprodukować co najmniej hl benzyny oraz hl oleju napędowego przy minimalnym koszcie zakupu surowca. Zdolność przerobowa wieży rektyfikacyjnej, mierzona łączną objętością wszystkich produktów wynosi hl. Czy limit produkcji odpadów zostanie wykorzystany w całości? Zadanie 3 Nowopowstająca sieć marketów ogłosiła przetarg na dostawę wózków. Zamówienie obejmuje wózki dwóch rodzajów: duże i małe. Firma, która wygrała przetarg zaoferowała cenę za swoje wyroby na poziomie odpowiednio 150 i 100 złotych. Do wyprodukowania wózków niezbędne są pręty stalowe. Na jeden duży wózek potrzeba ich 10 kg zaś na mały 8 kg. Zapas prętów poczyniony na poczet zamówienia wynosi 2,5 tony. Drugim niezbędnym surowcem jest tworzywo sztuczne. Zużywa się go 100 dag na wózek duży i 50 dag na mały, a zapas wynosi 200 kg. Kontrakt wymaga, aby dużych wózków było przynajmniej dwa razy tyle, co małych. Opracować plan produkcji zapewniający maksymalny przychód przy wynegocjowanych cenach. Jaka ilość prętów stalowych pozostanie niewykorzystana? Zadanie 4 Trener przed zawodami podejmuje decyzję odnośnie zakupu odpowiednich odżywek dla zawodników. Do wyboru ma dwie: Vitarevival i Komandirskaja. Z uwagi na ograniczone zasoby finansowe, w jakie został wyposażony, szkoleniowiec musi dążyć do jak najniższych kosztów zakupu. Cena jednego opakowania Vitarevival wynosi 2 euro, a Komandirskaja 3 euro. Podstawą wyboru jest zawartość trzech składników: S1, S2 i S3. Ich zawartość w jednym opakowaniu odżywki podaje tabela: Składnik Vitarevival Komandirskaja S1 2 2 S2 1 2 S
2 Wiadomo, że organizm potrzebuje co najmniej 10 jednostek S1 i co najwyżej 14 jednostek S2 oraz co najwyżej 18 jednostek S3. Opracować plan zaopatrzenia zawodników minimalizujący łączne koszty zakupu. Czy składnik S1 zostanie dostarczony w minimalnej, wymaganej ilości? Zadanie 5 Warsztat rękodzielniczy przygotowuje na najbliższy kiermasz gliniane dzbany dwóch rodzajów: A i B. Zysk ze sztuki A wynosi 60 a z 1 sztuki B 50 zł. Do wyrobu produktów używana jest glina, której zapas wynosi 150 kg. Następnie dzbany malowane są farbą, której warsztat posiada 30 litrów. Jednostkowe zużycie obu wymienionych surowców zawiera poniższa tabela: Produkt Glina [kg/szt.] Farba [l/szt.] Dzban A 1,5 0,2 Dzban B 2 0,3 Należy się spodziewać, że dzbanów typu A sprzedanych zostanie co najmniej 20 sztuk. Opracować plan produkcji zapewniający maksymalny zysk ze sprzedaży dzbanów (zakładamy, że cała produkcja zostanie sprzedana). Czy zapas gliny zostanie wykorzystany w całości? Zadanie 6 Kierownictwo firmy rozważa rozpoczęcie produkcji dwóch rodzajów (A i B) części do pralek. Przychód ze sprzedaży liczony jest jako suma kosztów i marży w przeliczeniu na 1 sztukę produktu i nie powinien być niższy niż 24 tys. zł. Części wytwarzane będą na maszynach, których limit nieprzerwanej pracy wynosi 10 godzin. Struktura zamówień ze strony odbiorców oznacza, że części A należy wyprodukować co najmniej 50 sztuk, zaś części B co najwyżej 120 sztuk. W poniższej tabeli znajdują się wartości kosztów, marży oraz czasu wytwarzania w przeliczeniu na 1 sztukę danego wyrobu: Rodzaj części Koszt [zł/szt.] Marża [zł/szt.] Czas wytw. [min.] A B Zbudować i rozwiązać liniowy model decyzyjny zapewniający maksymalny przychód z produkcji. Czy pozostanie rezerwa niewykorzystanego czasu pracy maszyn? Zadanie 7 Dane jest następujące zadanie optymalizacyjne: f(x) = 5x 1 + 2x 2 max 3x 1 + 3x 2 18 x 1 4 5x 1 + 2x 2 10 x 1 0, x 2 0 Znajdź rozwiązanie przy pomocy metody graficznej. 2
3 Zadanie 8 Dane jest następujące zadanie optymalizacyjne: f(x) = 10x x 2 min 2x 1 + 3x 2 60 x 1 + 2x 2 20 x 1 0, x 2 0 Znajdź rozwiązanie przy pomocy metody graficznej. x 2 10 Zadanie 9 Złotnik otrzymał zamówienie na produkcję biżuterii. Ma zamiar podzielić je na trzy rodzaje produktów: kolie, brosze i kolczyki. Do produkcji zużywać będzie złoto, srebro i platynę. Limity (zamówienie jest na wczoraj i nie ma czasu na uzupełnienie zapasów surowców) oraz wykorzystanie tychże surowców na jedną sztukę wyrobu prezentuje tabela: Zużycie jednostkowe [g] Kolia Brosza Kolczyki Limity [g] Złoto Srebro Platyna Jednostkowy zysk dla kolii wynosi 34 zł, dla broszy 20 zł, a dla kolczyków 50 zł. Złotnika interesuje osiągnięcie jak najwyższego zysku z całego zamówienia. Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 zmiennych c B bazowe (kolie) (brosze) (kolczyki) (złoto) (srebro) (platyna) bazowych x 3 1 2/3 2/3 5 s 2 0 1/3 2/3 10 s 3 2 8/3 4/3 10 j 1. Uzupełnij powyższą tabelę. 2. Podaj wynikające z niej rozwiązanie (wartości wszystkich zmiennych i funkcji celu). 3. Czy zapas srebra zostanie wykorzystany w całości? 4. Czy należy wyprodukować wszystkie rodzaje biżuterii? Zadanie 10 Importer planuje wprowadzenie na rynek herbaty powstającej z mieszanki trzech różnych gatunków tego krzewu. W przeliczeniu na 1 tonę sprowadzenie herbaty 1-go gatunku kosztuje 250 zł, 2-go gatunku 210 zł a 3-go gatunku 300 zł, przy czym koszt zakupu nie powinien przekroczyć 8000 zł. Herbata musi przejść obróbkę w specjalnych komorach oraz charakteryzować się określoną zawartością garbników. Czas obróbki i zawartość garbników w zależności od gatunku podaje tabela: 3
4 Herbata 1 Herbata 2 Herbata 3 Czas w komorze [min] Zawartość garbnika [mg/100g] Dostępny czas pracy komory wynosi 200 godzin. Walory smakowe wymagają, aby garbnika w mieszance znalazło się co najmniej 350 mg/100g. Opracować plan zakupu poszczególnych gatunków zapewniający minimum kosztów. Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 t 3 zmiennych c B bazowe (koszt) (czas, h) (garbnik) bazowych j s s 2 0,25 0,3 0,05 182,5 x 3 0,75 0,7 0, 05 17,5 1. Uzupełnij powyższą tabelę. 2. Podaj wynikające z niej rozwiązanie (wartości wszystkich zmiennych i funkcji celu). 3. Czy należy kupić wszystkie gatunki herbaty? 4. Czy faktycznie poniesione koszty zakupu będą niższe od zakładanych o 2750 zł? Zadanie 11 Zbudować plan produkcji maksymalizujący przychód ze sprzedaży trzech produktów A, B, C (zakładamy, że cała produkcja zostanie sprzedana). Przychód jednostkowy obliczany jest jako suma kosztów produkcji pojedynczego produktu oraz nakładanej marży. W procesie produkcji kluczowe znaczenie mają 2 surowce U1 i U2 oraz dostępny czas pracy maszyn. Jednostkowe wartości kosztów, marży, czasu pracy i zużycia surowców podaje tabela: Produkt Koszt (zł) Marża (zł) U1 (kg) U2 (l) Czas (min) A B C Zapas surowca U1 wynosi 3,4 t zaś U2: 20 hl. Dostępny limit czasu dla maszyn wynosi 50 godzin nieprzerwanej pracy. Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 zmiennych c B bazowe (A) (B) (C) (U1) (U2) (czas) bazowych j 1. Uzupełnij powyższą tabelę. s x ,2 400 s , Podaj wynikające z niej rozwiązanie (wartości wszystkich zmiennych i funkcji celu). 4
5 3. Czy wykorzystane zostanie 2000 kg surowca U1? 4. Czy dostępny czas pracy będzie wykorzystany w całości? Zadanie 12 Inwestora interesują trzy przylegające do siebie działki, pierwsza o pow. 510 m 2, druga 550 m 2 a trzecia 530 m 2. Firma planuje wykupić łącznie co najmniej 1000 m 2 terenu. Negocjacje prowadzono oddzielnie z poszczególnymi właścicielami. Zaoferowano ceny za 1 m 2 wynoszące dla odpowiednich działek: 200, 180, 170 zł, przy czym możliwe jest wykupienie po tej cenie tylko części danej działki. Opracować plan wykupienia stosownej powierzchni tak, aby łączny koszt zakupu był jak najmniejszy. Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 s 4 t 1 zmiennych c B bazowe (łącznie) (dz. 1) (dz. 2) (dz. 3) bazowych x s s x j Uzupełnij powyższą tabelę. 2. Podaj wynikające z niej rozwiązanie (wartości wszystkich zmiennych i funkcji celu). 3. Czy konieczny jest zakup wszystkich działek? 4. Czy zostanie wykupione 480 m 2 działki 2? Zadanie 13 Zakład mechaniczny MECHANIK otrzymał zamówienia na wykonanie kół zębatych, drążków sterowniczych, kół zamachowych. Zakład ten składa się z trzech oddziałów: frezarni, tokarni, montowni. Czas (w godzinach) potrzebny tym działom na wykonanie poszczególnych wyrobów zawiera tabela: Koła zębate Drążki sterownicze Koła zamachowe Frezarnia Tokarnia Montownia Maksymalny czas pracy dla oddziałów to: 200 godzin dla frezarni i tokarni i 300 godzin dla montowni. Wiedząc, że jednostkowy zysk na kołach zębatych wynosi 10 zł, na drążkach 20zł, a na kołach zamachowych 18 zł należy wyznaczyć taki plan produkcji, aby zysk osiągany przez warsztat był maksymalny. Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 zmiennych c B bazowe (zębate) (drążki) (zamach.) (frez.) (tok.) (mont.) bazowych 1 5/8 1/4 1/ x 1 0 7/8 1/4 5/ /2 0 1/ j
6 1. Uzupełnij powyższą tabelę. 2. Podaj wynikające z niej rozwiązanie (wartości wszystkich zmiennych i funkcji celu). 3. Czy czas pracy montowni zostanie wykorzystany w całości? 4. Czy któraś z części nie powinna być produkowana? Zadanie 14 Poniżej znajduje się model decyzyjny dla pewnego zadania optymalizacyjnego: X A liczba zamontowanych elementów typu A [szt.] X B liczba zamontowanych elementów typu B [szt.] f(x) = 5X A + 6X B min (czas montażu [sek.]) 5X A + 6X B X A 1000 X A 2X B 0 (czas montażu [sek.]) (wielkość produkcji A [szt.]) (proporcja A do B [szt.]) 0,1X A + 0,15X B 100 (zużycie wody [l]) X A 0, X B 0 Wartości Zmienne X A X B s 1 s 2 s 3 s 4 t 2 t 3 zmiennych c B bazowe (czas) (prod.) (propor.) (woda) bazowych s X A ,15 0, j 5-M M 1. Uzupełnij powyższą tabelę. 2. Podaj wynikające z niej rozwiązanie (wartości wszystkich zmiennych i funkcji celu). 3. Czy należy montować obie części? 4. Czy woda zostanie zużyta w maksymalnej dopuszczalnej ilości? Zadanie 15 Trzy punkty skupu dostarczają złom do trzech hut. Punkty dysponują odpowiednio 25, 26 i 24 tonami złomu, podczas gdy huty mogą przyjąć: 29, 26 i 20 tony. Macierz jednostkowych kosztów przewozu (zł) jest następująca: C = Opracować plan dostaw złomu minimalizujący łączne koszty transportu używając metody kąta północno-zachodniego. Zadanie 16 Trzech rolników dostarcza mleko do trzech mleczarni. Rolnicy owi dostarczają odpowiednio 200, 6
7 150, 220 hl mleka. Poszczególne mleczarnie mogą przyjąć następujące ilości: 100, 300 i 150 hl. Koszty przewiezienia jednego hl mleka (zł) między rolnikami a mleczarniami przedstawia macierz: C = Opracować plan dostarczenia całego mleka tak, aby łączny koszt przewozu był jak najmniejszy (wykorzystać metodę kąta północno-zachodniego). Zadanie 17 Trzy cementownie zaopatrują w cement cztery budowy. Cementownie dysponują odpowiednio 20, 30 i 40 tonami cementu, podczas gdy zapotrzebowanie na budowach wynosi: 15, 20, 20 i 30 ton. Macierz jednostkowych kosztów przewozu (zł) jest następująca: C = Opracować plan dostaw minimalizujący koszty transportu używając metody kąta północnozachodniego Zadanie 18 Czterech producentów dostarcza do 2 kontrahentów wyroby metalowe. Dysponują oni odpowiednio 50, 30, 45 i 23 tonami wyrobów, podczas gdy zapotrzebowanie wynosi u każdego z odbiorców po 60 ton. Macierz jednostkowych kosztów przewozu (zł) jest następująca: C = Z powodu remontu, droga między drugim producentem a drugim odbiorcą jest całkowicie nieprzejezdna. Opracować plan dostaw minimalizujący koszty transportu używając metody kąta północno-zachodniego. Zadanie 19 Trzy autobusy muszą rozwieźć ludzi w trzy różne miejsca. Pojemności autobusów, liczbę osób mających znaleźć się w punktach docelowych oraz macierz kosztów jednostkowych (zł) podaje poniższa tabela: Miejsce 1 Miejsce 2 Miejsce 3 a Autobus 1 2,5 3,0 1,5 31 Autobus 2 1,2 1,3 3,0 30 Autobus 3 3,2 3,3 4,0 28 b Opracować plan dostaw minimalizujący koszty transportu używając metody kąta północnozachodniego. Zadanie 20 Dwa duże gospodarstwa rolne zaopatrują w buraki cukrowe cztery punkty skupu. W tym roku pierwsze gospodarstwo dostarczy 75 a drugie 60 ton buraków. Punkty skupu skłonne są przyjąć odpowiednio: 40, 30, 32, 29 ton buraków. Macierz jednostkowych kosztów przewozu (zł) jest następująca: 7
8 Punkt skupu 1 Punkt skupu 2 Punkt skupu 3 Punkt skupu 4 Gospodarstwo 1 2,5 2,3 2,7 2,3 Gospodarstwo 2 2,9 3,0 2,1 2,1 Na trasie z gospodarstwa 2 do trzeciego punktu skupu zorganizowano objazd, w związku z czym można na tej trasie przewieźć do 25 ton ładunku. Opracować plan dostaw minimalizujący koszty transportu używając metody kąta północno-zachodniego. Zadanie 21 Konserwy z trzech wojskowych magazynów mają trafić do trzech jednostek. Z magazynu pierwszego wyjedzie 20, z drugiego 30, a z trzeciego 24 tony konserw. Do jednostek ma trafić odpowiednio: 28, 26, 20 ton. Macierz jednostkowych kosztów przewozu (zł) jest następująca: C = Trasa z magazynu 1 do jednostki 3 jest całkowicie nieprzejezdna Opracować plan dostaw minimalizujący koszty transportu używając metody kąta północno-zachodniego. Zadanie 22 Producenci serialu A jak alabaster zamówili u dwóch dostawców elementy dekoracji, które tymczasowo mają znaleźć się w jednym z czterech magazynów wytwórni. Dostawca 1 może zapewnić 200 a drugi 180 kg owych elementów. W pierwszym magazynie ma się znaleźć 120, w drugim 60, w trzecim 130 a w czwartym 70 kg elementów. Z powodu koczowania licznej grupy fanów, trasa od pierwszego dostawcy do trzeciego magazynu jest nieprzejezdna. Macierz jednostkowych kosztów przewozu jest następująca: [ ] C = Opracować plan dostaw minimalizujący koszty transportu używając metody kąta północnozachodniego. Zadanie 23 W związku z oczekiwaną serią kontroli sanepidu właściciel zakładów mięsnych musi zabrać część wędlin z objętych kontrolą zakładów i zawieźć je do dwóch firm zajmujących się utylizacją. Pierwsza z nich jest w stanie przyjąć 16, a druga 17 ton wędlin. Z każdego zakładu należy usunąć po 11 ton wędlin. Na drodze z pierwszego zakładu do pierwszej firmy należy pokonać most, przez który na raz przejedzie tylko 5 ton wędliny. Macierz jednostkowych kosztów transportu jest następująca: 3 4 C = Zadanie 24 (Jędrzejczyk, Kukuła) W skład pewnego przedsiębiorstwa wchodzi sześć zakładów produkcyjnych. Rozprowadzanie surowców oraz wyrobów gotowych odbywa się przy wykorzystaniu taboru samochodowego. Wielkości przywozu i wywozu (wyrażone pełną liczbą samochodów) oraz odległości pomiędzy zakładami (w km) zestawiono w tabeli. 8
9 Zakłady Wywóz Przywóz Zbudować model, który pozwoli ustalić plan przebiegu pustych ciężarówek pomiędzy zakładami. Podać minimalną wartość samochodokilometrów pustych przebiegów. Zadanie 25 (Jędrzejczyk, Kukuła) Do siedmiu stacji kolejowych nadchodzą i są odprawiane przesyłki całowagonowe. Wielkości przywozu i wywozu oraz odległości między stacjami podano w tabeli. Stacje Wywóz Przywóz Opracować plan przewozu pustych wagonów tak, aby łączny wagonokilometraż pustych przebiegów był najmniejszy. Zadanie 26 (Jędrzejczyk, Kukuła) Przedsiębiorstwo transportowe dysponuje 75 ciężarówkami rozmieszczonymi na sześciu budowach. W tablicy podano odległości pomiędzy budowami oraz przywóz i wywóz wyrażony liczbą pustych samochodów. Budowy Wywóz Przywóz Opracować plan przejazdu pustych ciężarówek pomiędzy budowami tak, aby łączny samochodokilometraż był minimalny. Zadanie 27 (Na podst. materiałów do książki T. Trzaskalika) Dla poniższego grafu znajdź maksymalny przepływ w sieci (wykorzystując do tego celu lewą z wartości podanych na łuku) oraz najkrótszą drogę w sieci. 9
10 1 (15,4) (20,0) (18,10) (11,1) 2 6 (8,8) (7,3) (8,0) (13,5) 3 (5,0) (12,2) (7,0) (10,0) 4 5 Zadanie 28 (Na podst. materiałów do książki T. Trzaskalika) Dla poniższego grafu znajdź maksymalny przepływ w sieci (wykorzystując do tego celu lewą z wartości podanych na łuku) oraz najkrótszą drogę w sieci. 1 (2,2) (8,1) (4,0) 2 (5,6) (1,0) (3,2) 4 (6,0) (10,5) (1,0) 6 (7,6) 3 (7,1) 5 Zadanie 29 (Na podst. materiałów do książki T. Trzaskalika) Na podstawie poniższej tabeli zbuduj graf, a następnie wyznacz dla niego najkrótsze drogi w sieci x x x x x 13 Zadanie 30 (Na podst. materiałów do książki T. Trzaskalika) Na podstawie poniższej tabeli zbuduj graf, a następnie wyznacz dla niego maksymalny przepływ w sieci x x x x x z 10
11 Odpowiedzi do zadań Zadanie 1 X A + 3X B max Stal: X A + 2X B Drewno: 2X A + X B Ruda: 2X A + 2X B X opt A Zadanie 2 X A 0, X B 0 = 0, Xopt B = 10000, f max = R R 2 min Benzyna: 16R R Olej: 20R R Odpady: 24R R R 1 0, R 2 0 R opt 1 = 600, R opt 2 = 800, f min = Zadanie 6 100A + 120B max Przychód: 100A + 120B Czas: 3A + 2B 600 Min A: A 80 Max B: B 120 A 0, B 0 A opt = 120, B opt = 120, f max = Zadanie 7 Zadanie 8 X opt 1 = 4, X opt 2 = 2, f max = 24 X opt 1 = 0, X opt 2 = 10, f min = 100 Zadanie 3 150W D + 100W M max Pręty: 10W D + 8W M 2500 Tworzywo: W D + 0,5W M 200 Proporcja: W D 2W M 0 W opt D Zadanie 4 Zadanie 5 W D 0, W M 0 opt = 160, WM = 80, f max = V + 3K min S1: 2V + 2K 10 S2: V + 2K 14 S3: 3V + 6K 18 V 0, K 0 V opt = 5, K opt = 0, f min = 10 60A + 50B max Glina: 1,5A + 2B 150 Farba: 0,2A + 0,3B 30 Min A: A 20 A 0, B 0 A opt = 100, B opt = 0, f max =
12 Zadanie 9 34X X X 3 max Złoto: 3X 1 + 2X 2 + 3X 3 15 Srebro: 2X 1 + X 2 + 2X 3 20 Platyna: 2X 1 + 4X 3 30 X 1 0, X 2 0, X Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 zmiennych c B bazowe (kolie) (brosze) (kolczyki) (złoto) (srebro) (platyna) bazowych 50 x 3 1 2/3 1 2/ s 2 0 1/3 0 2/ s 3 2 8/3 0 4/ j / / Zadanie X X X 3 min Koszt: 250X X X Czas: 0,5X 1 + X 2 + X Garbnik: 15X X X X 1 0, X 2 0, X M Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 t 3 zmiennych c B bazowe (koszt) (czas, h) (garbnik) bazowych 0 s s 2 0,25 0, ,05 0,05 182,5 300 x 3 0,75 0, ,05 0,05 17,5 j M Zadanie 11 14X X X 3 max U1: 8X 1 + 2X 2 + 5X U2: 5X 1 + 5X 2 + 5X Czas: 5X X 2 + 6X X 1 0, X 2 0, X
13 Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 zmiennych c B bazowe (A) (B) (C) (U1) (U2) (czas) bazowych 0 s x , s , j , Zadanie X X X 3 min Pow.: X 1 + X 2 + X Dz1: X Dz2: X Dz3: X X 1 0, X 2 0, X M Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 s 4 t 1 zmiennych c B bazowe (łącznie) (dz. 1) (dz. 2) (dz. 3) bazowych 180 x s s x j M Zadanie 13 10X X X 3 max Frezarnia: X 1 + 5X 2 + 4X Tokarnia: 2X 1 + 2X 2 + 3X Montownia: X 1 + X 2 + 2X X 1 0, X 2 0, X Wartości Zmienne x 1 x 2 x 3 s 1 s 2 s 3 zmiennych c B bazowe (zębate) (drążki) (zamach.) (frez.) (tok.) (mont.) bazowych 20 x /8 1/4 1/ x /8 1/4 5/ s /2 0 1/ j 0 0 3,25 2,5 3,
14 Zadanie M M Wartości Zmienne X A X B s 1 s 2 s 3 s 4 t 2 t 3 zmiennych c B bazowe (czas) (prod.) (propor.) (woda) bazowych 0 s X A s s 4 0 0,15 0 0, , j M M 5000 Zadanie 15 Zadanie zamknięte X opt = , K min = Jedyne rozwiązanie. 3 iteracje Zadanie 16 Zadanie otwarte X opt = , K min = Istnieją jeszcze dwa inne rozwiązania. 3 iteracje Zadanie 17 Zadanie otwarte X opt = , K min = Jedyne rozwiązanie. 3 iteracje Zadanie 18 Zadanie otwarte X opt = , K min = Jedyne rozwiązanie. 4 iteracje 14
15 Zadanie 19 Zadanie zamknięte X opt = , K min = 187, Istnieje jeszcze jedno rozwiązanie. 3 iteracje Zadanie 20 Zadanie otwarte. [ ] X opt =, K min = 302,1 Jedyne rozwiązanie. 3 iteracje Zadanie 21 Zadanie zamknięte X opt = , K min = Jedyne rozwiązanie. 3 iteracje Zadanie 22 Zadanie zamknięte. [ ] X opt =, K min = 5150 Istnieją jeszcze dwa rozwiązania. 3 iteracje Zadanie 23 Zadanie zamknięte X opt = 5 6, K min = K min = 411, i = 1, 2, 6; j = 3, 4, 5 Zadanie 27 Maksymalny przepływ: 36. Najkrótsze drogi w sieci: Trasa Droga Zadanie 28 Maksymalny przepływ: 14. Najkrótsze drogi w sieci: Trasa Droga Zadanie 29 Najkrótsze drogi w sieci: Trasa Droga Zadanie 30 Maksymalny przepływ: 8 Istnieją jeszcze dwa rozwiązania. 4 iteracje Zadanie X opt = K min = 224, i = 1, 2, 3; j = 4, 6 Zadanie 25 [ ] X opt = K min = 781, i = 1, 5; j = 2, 3, 4, 6, 7 Zadanie X opt =
Halabarda A Halabarda B Zapas [t] Stal Drewno
Zadanie 1 Zamkowa zbrojownia produkuje dwa rodzaje halabard: A i B, które stały się jej przebojem eksportowym. Jednostkowy zysk osiągany na halabardzie A równa się 1 dukatowi, a na halabardzie B 3 dukatom.
Halabarda A Halabarda B Zapas [t] Stal 1 2 20 Drewno 2 1 18
Zadanie 1 Zamkowa zbrojownia produkuje dwa rodzaje halabard: A i B, które stały się jej przebojem eksportowym. Jednostkowy zysk osiągany na halabardzie A równa się 1 dukatowi, a na halabardzie B 3 dukatom.
Zadanie 1 Zadanie 2 Zadanie 3 Zadanie 4
Zadanie 1 Zamkowa zbrojownia produkuje dwa rodzaje halabard: A i B, które stały się jej przebojem eksportowym. Jednostkowy zysk osiągany na halabardzie A równa się 1 dukatowi, a na halabardzie B 3 dukatom.
Zbiór zadań z Badań operacyjnych
Adam Kucharski Zbiór zadań z Badań operacyjnych Wydanie 3 Łódź 2015 ISBN 978-83-934591-3-1 Spis treści 1. Programowanie liniowe....................................... 3 2. Programowanie liniowe w liczbach
Lista 1 PL metoda geometryczna
Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x
Zbiór zadań z badań operacyjnych Wydanie drugie
Adam Kucharski Zbiór zadań z badań operacyjnych Wydanie drugie Łódź 2012 ISBN 978-83-934591-1-7 Spis treści 1. Programowanie liniowe....................................... 3 2. Programowanie liniowe w
ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując
Przykładowe zadania rozwiązywane na ćwiczeniach
Przykładowe zadania rozwiązywane na ćwiczeniach Zad.. Określić ilość kursów poszczególnych środków transportu, przy których koszty przewozu gotowych wyrobów z przedsiębiorstwa do hurtowni będą najniższe.
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Ekonometria Programowanie Liniowe. Robert Pietrzykowski
Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.3. ZADANIA W zadaniach 2.1 2.20
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700
Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 jednostek, przy czym dla mikroelementu M1 maksymalna dzienna
METODY OBLICZENIOWE OPTYMALIZACJI zadania
METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA
GIMNAZJUM Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA Zadanie 1. Trzy lata temu posadzono przed domem krzew. Co roku
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
Polityka rachunkowości Łukasz Szydełko. Lista 1
Polityka rachunkowości Łukasz Szydełko Lista 1 Zad.1 W polityce rachunkowości piekarni Ela Sp. z o.o. przyjęto, że wartość materiałów bezpośrednio po zakupie odpisywana jest w koszty. W celu ustalenia
PROBLEMY DECYZYJNE KRÓTKOOKRESOWE
PROBLEMY DECYZYJNE KRÓTKOOKRESOWE OPTYMALNA STRUKTURA PRODUKCJI Na podstawie: J. Wermut, Rachunkowość zarządcza, ODDK, Gdańsk 2013 1 DECYZJE KRÓTKOOKRESOWE Decyzje krótkookresowe to takie, które dotyczą
Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).
PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące
Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto
Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
RACHUNEK KOSZTÓW _ ZADANIA
RACHUNEK KOSZTÓW _ ZADANIA Zadania_Kalkulacja podziałowa prosta, współczynnikowa i odjemna Przykład_1 wyprodukowano 80 sztuk wyrobów gotowych i 50 sztuk wyrobów zaawansowanych w 40% z punktu widzenia poniesionych
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Badania operacyjne. Lista zadań projektowych nr 2
Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Programowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Rachunek kosztów działań sterowany czasem TD ABC
Projektowanie procesów dr Mariusz Maciejczak www.maciejczak.pl Rachunek kosztów działań sterowany czasem TD ABC ABC Rachunek kosztów działań Nośniki kosztów Mierniki częstotliwości i intensywności z jaką
DOKUMENTACJA MAGAZYNOWA - zadanie 3/24/15
DOKUMENTACJA MAGAZYNOWA - zadanie 1 Przykładowa instrukcja obiegu dokumentacji magazynowej (bardzo skrócona i bardzo uproszczona) 1. Materiały a. Przyjęcie materiału do magazynu: Materiały/surowce/opakowania
KALKULACJE KOSZTÓW. Dane wyjściowe do sporządzania kalkulacji
KALKULACJE KOSZTÓW Jednostką kalkulacyjną jest wyrażony za pomocą odpowiedniej miary produkt pracy (wyrób gotowy, wyrób nie zakończony, usługa) stanowiący przedmiot obliczania jednostkowego kosztu wytworzenia
4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Praktyka optymalizacji w arkuszu kalkulacyjnym (moduł Praktyczne Problemy Optymalizacji)
Adam Kucharski Praktyka optymalizacji w arkuszu kalkulacyjnym (moduł Praktyczne Problemy Optymalizacji) Zadanie 1 Podstawowym asortymentem pewnego zakładu są wyroby A i B. Zysk jednostkowy na tych wyrobach
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Metody kalkulacji kosztu jednostkowego
Metody kalkulacji kosztu jednostkowego Dane dotyczące produkcji w firmie X w styczniu przedstawiają się następująco: saldo początkowe produkcji w toku 0 liczba wyrobów przekazanych do magazynu 20 000 liczba
Środki produkcji Jedn. nakłady środka W1 Jedn. nakłady środka W2 I 6 6 II 10 5
PROGRAMOWANIE LINIOWE ZADANIA TEKSTOWE 5. Zakład produkuje dwa typy wózków: S i H. Zysk ze sprzedaży jednego wózka typu S wynosi 2850 zł a wózka typu H 6270 zł. Koszt produkcji jednego wózka typu S wynosi
Praktyka optymalizacji w arkuszu kalkulacyjnym (Analityka Gospodarcza)
Adam Kucharski Praktyka optymalizacji w arkuszu kalkulacyjnym (Analityka Gospodarcza) Zadanie 1 Podstawowym asortymentem pewnego zakładu są wyroby A i B. Zysk jednostkowy na tych wyrobach wynosi odpowiednio
Badania Operacyjne Ćwiczenia nr 4 (Materiały)
Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów
Przewieziona masa wg grup towarowych [tysięcy ton].
Przewieziona masa wg grup towarowych [tysięcy ton]. 2010 2011 zmiana % 2011/2010 udział % 2010 łącznie 235 469,587 249 348,263 5,89% 100,00% 100,00% produkty rolnictwa, łowiectwa, leśnictwa, rybactwa i
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
dr hab. Marcin Jędrzejczyk
dr hab. Marcin Jędrzejczyk Do zapasów zaliczyć należy: (1) materiały, czyli przedmioty pracy nabyte w celu całkowitego zużycia w jednym cyklu produkcyjnym lub zużycia na inne potrzeby, na przykład konserwacji
Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego.
Wydział Matematyki Programowanie liniowe Ćwiczenia Zestaw. Modelowanie zadań programowania liniowego. Zadania dotyczące zagadnienia planowania produkcji Zadanie.. Zapisać następujące zadanie w postaci
Problem zarządzania produkcją i zapasami
Problem zarządzania produkcją i zapasami Wykorzystamy zasadę optymalności Bellmana do poradzenia sobie z zarządzaniem zapasami i produkcją w określonym czasie z punktu widzenia istniejącego i mogącego
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
Modelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
Przewieziona masa wg grup towarowych [tysięcy ton].
2013/2014 Przewieziona masa wg grup towarowych [tysięcy ton]. 2013 2014 zmiana % 2014/2013 2013 2014 łącznie 233 196,920 228 866,019-1,86% 100,00% 100,00% produkty rolnictwa, łowiectwa, leśnictwa, rybactwa
Kalkulacja podziałowa prosta. gdzie: KC koszt całkowity x wg ilość wyprodukowanych wyrobów gotowych k j koszt jednostkowy
Rachunek kosztów Paweł Łagowski Zakład Zarządzania Finansami Instytut Nauk Ekonomicznych Wydział Prawa, Administracji i Ekonomii Uniwersytet Wrocławski Kalkulacja podziałowa prosta gdzie: KC koszt całkowity
Studia stacjonarne I stopnia
Studia stacjonarne I stopnia Kierunek Logistyka sem. 1 Logistyka Ćwiczenia 5 Mierniki i wskaźniki logistyczne Transport Logistyka przedsiębiorstwa Logistyka marketingowa Logistyka materiałowa Logistyka
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów
Rachunkowość zarządcza
Rachunkowość zarządcza Dorota Kuchta www.ioz.pwr.wroc.pl/pracownicy/kuchta/dydaktyka.htm 1 Podstawowa literatura Gabrusewicz W., Kamela-Sowińska A., Poetschke H., Rachunkowość zarządcza, PWE, Warszawa
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
TEST Z RACHUNKOWOSCI PRZEDSIĘBIORSTW KLASA IV LICEUM EKONOMICZNEGO
TEST Z RACHUNKOWOSCI PRZEDSIĘBIORSTW KLASA IV LICEUM EKONOMICZNEGO. CHARAKTERYSTYKA TESTU. Test osiągnięć szkolnych sprawdzający wielostopniowy, nieformalny, nauczycielski, pisemny. Test obejmuje sprawdzenie
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
TK-2a. Sprawozdanie o przewozach ładunków w komunikacji międzynarodowej transportem kolejowym. za rok 2015 Przekazać do 14 marca 2016 r.
GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 2, 00-925 Warszawa Nazwa i adres jednostki sprawozdawczej Numer identyfikacyjny - REGON TK-2a Sprawozdanie o przewozach ładunków w komunikacji międzynarodowej
c j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.
Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość
PROBLEMY DECYZYJNE KRÓTKOOKRESOWE. WYTWORZYĆ CZY KUPIĆ? outsourcing
PROBLEMY DECYZYJNE KRÓTKOOKRESOWE WYTWORZYĆ CZY KUPIĆ? outsourcing 1. Produkować samemu czy zlecić wytwarzanie na zewnątrz ( outsourcing)? Rozstrzygnięcie tego problemu decyzyjnego wymaga porównania ceny
szt. produkcja rzeczywista
128 000 zł 100 000 zł linia budżetu przeliczonego 10 000 szt. produkcja rzeczywista 14 000 szt. produkcja planowana Wydział przedsiębiorstwa produkcyjnego ponosi stałe koszty w wysokości 30 000 zł w miesiącu
Analiza korelacji i regresji dwóch zmiennych losowych
Analiza korelacji i regresji dwóch zmiennych losowych 1. Badano zależność między ilością godzin przebywania samolotu w powietrzu ( nalot lotniczy) a ilością wypadków. Na podstawie zebranych danych z pewnego
szt. produkcja rzeczywista
128 000 zł 100 000 zł linia budżetu przeliczonego 10 000 szt. produkcja rzeczywista 14 000 szt. produkcja planowana Wydział przedsiębiorstwa produkcyjnego ponosi stałe koszty w wysokości 30 000 zł w miesiącu
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Test kompetencji zawodowej
Test kompetencji zawodowej Test składa się z 24 pytań. Aby zaliczyć należy uzyskać co najmniej 17 pkt. Za każde rozwiązane zadanie jest 1 pkt. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie zadań
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
ZADANIE KONKURSOWE I etap
Katowice, 26.04.2016 r. ZADANIE KONKURSOWE I etap Założenia Przedsiębiorstwo produkuje trzy rodzaje przetworów owocowych: konfiturę wiśniową (250 g), powidła śliwkowe (320 g), mus jabłkowy (1000 g). Produkcja
Rachunek kosztów normalnych
Rachunek kosztów normalnych Rachunek kosztów normalnych uzasadnionych Rachunek kosztów normalnych: zniwelowanie wpływu różnic w wykorzystaniu zdolności produkcyjnych w wyniku zmian w rozmiarach produkcji
Zespół Katedry Rachunkowości Menedżerskiej SGH 1
RM Rachunek kosztów docelowych Zarządzający zastanawiają się nad redukcją kosztów w momencie kiedy klienci nie akceptują pożądanej ceny Dr Marcin Pielaszek 2 Target Costing całkowicie zmienia sposób zarządzania
odchylenie ceny materiału A = (6 zł/litr - 5,5 zł/litr) x litrów = zł
Rozwiązanie zadania 2 analiza odchyleń w RKZ 1. materiałów bezpośrednich a) cen materiałów bezpośrednich cena standardowa materiału A = 6 zł/litr cena rzeczywista materiału A = 5,5 zł/litr zużycie materiału
szt. produkcja rzeczywista
128 000 zł 100 000 zł linia budżetu przeliczonego 10 000 szt. produkcja rzeczywista 14 000 szt. produkcja planowana Wydział przedsiębiorstwa produkcyjnego ponosi stałe koszty w wysokości 30 000 zł w miesiącu
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Projekt GIEŁDA CZY TARG?
MIKOŁAJ HAMERSKI klasa 4a Ogólnokształcąca Szkoła Muzyczna I St. Im. I.J.Paderewskiego w Krakowie ul. Basztowa 8 31-134 Kraków CENTRUM MŁODZIEŻY UL. KRUPNICZA 38 31-123 KRAKÓW Oraz POLSKIE TOWARZYSTWO
Systemy rachunku kosztów
Systemy rachunku kosztów Tradycyjny rachunek kalkulacyjny kosztów oparty na rozmiarach produkcji kalkulacja doliczeniowa (zleceniowa), doliczanie kosztów wydziałowych kalkulacja podziałowa (procesowa)
Wieloetapowe zagadnienia transportowe
Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych
1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna
-. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla
Strategie wspó³zawodnictwa
Strategie wspó³zawodnictwa W MESE można opracować trzy podstawowe strategie: 1) niskich cen (dużej ilości), 2) wysokich cen, 3) średnich cen. STRATEGIA NISKICH CEN (DUŻEJ ILOŚCI) Strategia ta wykorzystuje
pytań o odwrotne obciążenie - zmiany od 1 lipca 2015 r.
PODATKI NR 10 INDEKS 36990X ISBN 9788374403702 CZERWIEC 2015 CENA 29,90 ZŁ (W TYM 5% VAT) UKAZUJE SIĘ OD 1995 ROKU 100 pytań o odwrotne obciążenie - zmiany od 1 lipca 2015 r. Kiedy kupujący będzie rozliczał
Rozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
ZADANIE 1 W 1 W 2 W 3 P P P P
ZADANIE 1 Trzy wydawnictwa: W 1, W 2 i W 3 zaopatrują się w materiały w czterech papierniach: P 1, P 2, P 3 oraz P 4. Zapotrzebowanie zakładów wynosi kolejno: 300, 400 oraz 100 kg papieru tygodniowo, natomiast
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Informacje o zawodach (szkoła młodzieżowa) I. Technikum zawodowe (4-letnie) 1) Technik mechanik
Informacje o zawodach (szkoła młodzieżowa) I. Technikum zawodowe (4-letnie) 1) Technik mechanik Organizuje i nadzoruje produkcję, montaż, naprawy i konserwacje wszelkich maszyn i urządzeo produkowanych
Przykład: frytki i puree Analiza wrażliwości współczynników funkcji celu
Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,