Badania Operacyjne Ćwiczenia nr 4 (Materiały)
|
|
- Lech Wrona
- 8 lat temu
- Przeglądów:
Transkrypt
1 Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów modelu. Można się tego dowiedzieć z analizy wrażliwości rozwiązania optymalnego na zmiany niektórych paramentów modelu. Analiza wrażliwości dotyczy: 1. Współczynników funkcji celu (np. cen wyrobów). Analiza wrażliwości umożliwia znalezienie odpowiedzi na pytanie, w jakich granicach mogą się zmienić współczynniki funkcji celu (np. ceny wyrobów), żeby dotychczasowe rozwiązanie było optymalne. Nie zmienią się optymalne wielkości X * n, natomiast zmieni się (zwiększy lub zmniejszy) wartość funkcji celu. 2. Wyrazów wolnych w warunkach ograniczających (np. zasobów surowca, norm ilości danego składnika żywienia). Analiza wrażliwości pozwala określić w jakich granicach mogą się zmieniać wyrazy wolne, żeby w rozwiązaniu optymalnym pozostały dotychczasowe zmienne bazowe. Nie zmieni się baza optymalna, natomiast zmienią się optymalne wartości zmiennych bazowych oraz wartość funkcji celu. 3. Współczynników występujących po lewej stronie układu warunków ograniczających. 4. Nowych warunków ograniczających. ZADANIE 1 Przedsiębiorstwo produkuje dwa wyroby: W 1 oraz W 2. Ograniczeniem w procesie produkcji są zapasy trzech surowców: S 1, S 2 oraz S 3. W tablicy 1 podano jednostkowe nakłady surowców na produkcję wyrobów, zapasy surowców oraz ceny wyrobów. Surowce Zużycie surowca (w kg) na 1 szt. wyrobu Zapasy surowca (w kg) W 1 W 2 S S S 3 1,5-600 Cena (zł) Artur Piątkowski WZ UW Strona 1
2 Rozwiązać model z wykorzystaniem dodatku Solver, który znajduje się w arkuszu kalkulacyjnym MS Excel (1) Określić rozmiary produkcji wyrobów W 1 oraz W 2, które gwarantują maksymalny przychód ze sprzedaży. Pierwszym etapem jest zapisanie powyższego problemu decyzyjnego za pomocą programu liniowego: Zmienne decyzyjne: ść ść Warunki ograniczające: Funkcja celu: Następnie należy zaimplementować powyższy program do arkusza kalkulacyjnego MS Excel Przenosimy do arkusza poszczególne części programu: zmienne decyzyjne, warunki ograniczające oraz funkcję celu. Artur Piątkowski WZ UW Strona 2
3 Po zaimplementowaniu modelu (programu) do arkusza kalkulacyjnego, należy go rozwiązać z wykorzystaniem dodatku Solver. Odp1.: Optymalne rozmiary produkcji wynoszą: 200 jednostek wyrobu W 1 oraz 600 jednostek wyrobu W 2 (X * 1 =200, X * 2 =600). Taka kombinacja produkcji wyrobów gwarantuje maksymalny przychód ze sprzedaży, który wynosi zł. (2) Jak może zmieniać się cena wyrobu pierwszego W 1 (w jakich granicach), aby rozwiązanie optymalne nie uległo zmianie? Do odpowiedzi na drugie pytanie będzie potrzebny raport wrażliwości, który można wygenerować za pomocą dodatku Solver. Artur Piątkowski WZ UW Strona 3
4 Żeby znaleźć odpowiedź na powyższe pytanie, należy przeanalizować raport wrażliwości komórek zmiennych. Informuje on w jakich granicach mogą zmienić się wartości współczynników znajdujących się w funkcji celu, żeby rozwiązanie optymalne (wartości X * 1 i X * 2 ) pozostało bez zmian. Należy pamiętać, że nie można zmieniać poszczególnych współczynników RÓWNOCZEŚNIE! Jeżeli jeden współczynnik (cena) zmienia się w określonych granicach, to pozostałe współczynniki (ceny) muszą pozostać niezmienione! Pierwszy współczynnik funkcji celu (cena wyrobu pierwszego) wynosi 30. Może on wzrosnąć o 10, lub zmniejszyć się o 10, żeby rozwiązanie optymalne pozostało bez zmian. Należy pamiętać o tym, że jest to przedział obustronnie domknięty. Odp2.: Obecne rozwiązanie optymalne nie ulegnie zmianie, jeżeli cena wyrobu pierwszego W 1 będzie przyjmować wartości z przedziału <20; 40>. (3) Jak może zmieniać się cena wyrobu drugiego W 2 (w jakich granicach), aby rozwiązanie optymalne nie uległo zmianie? Drugi współczynnik funkcji celu (cena wyrobu drugiego) wynosi 20. Może on wzrosnąć o 10, lub zmniejszyć się o 5, żeby rozwiązanie optymalne pozostało bez zmian. Odp3.: Obecne rozwiązanie optymalne nie ulegnie zmianie, jeżeli cena wyrobu drugiego W 2 będzie przyjmować wartości z przedziału <15; 30>. Artur Piątkowski WZ UW Strona 4
5 (4) Ile jest co najwyżej rozwiązań bazowych powyższego modelu? Zapisujemy warunki ograniczające w postaci kanonicznej: Tworzymy macierz A, która jest macierzą współczynników stojących po lewej równań: [ ] Powstała macierz o trzech rzędach m=3 oraz pięciu kolumnach n=5. Jeżeli n>m (5>3), to układ ma nieskończenie wiele rozwiązań, ale skończoną liczbę rozwiązań bazowych. Wykorzystując symbol Newtona, który jest funkcją dwóch argumentów całkowitych nieujemnych, można określić wszystkie kombinacje trzyelementowe (m=3) ze zbioru pięcioelementowego (n=5). W takim wypadku mamy co najwyżej: Odp4.: Jest co najwyżej 10 rozwiązań bazowych powyższego modelu. (5) Wymienić zmienne bazowe oraz niebazowe. Artur Piątkowski WZ UW Strona 5
6 Zmienne bazowe są to takie zmienne, które są większe od zera. Zmienne niebazowe to takie zmienne, które równają się zero. X 1 * oraz X 2 * to zmienne decyzyjne, które są bazowe, ponieważ ich wartość wynosi odpowiednio 200 i 600 (są większe od zera). X 3 *, X 4 * oraz X 5 * to zmienne swobodne (uzupełniające, dodatkowe). Informują one o różnicy pomiędzy prawą i lewą stroną nierówności (mierzą niewykorzystaną wielkość wyrazów wolnych warunków ograniczających). X 3 *, X 4 * oraz X * 5 informują ile jest niewykorzystanych zapasów surowców S 1, S 2, S 3. X 3 *, X 4 * informują, że zasób surowców S 1 oraz S 2 jest w pełni wykorzystany. X* 5 informuje, że jest jeszcze 300 kg niewykorzystanego zapasu surowca S 3 (zasób nie jest w pełni wykorzystany). Zmienne bazowe X 1 *, X 2 *, X 5 * tworzą bazę optymalną modelu! Odp5.: Występują trzy zmienne bazowe: X * 1 =200, X * 2 =600,X * 5 =300 (baza optymalna) oraz dwie zmienne niebazowe: X * 3 =0, X * 4 =0. (6) Czy i jak rozwiązanie optymalne ulegnie zmianie, jeżeli zasób surowca S 1 wzrośnie do 1100 kg? Czy zmieni się baza optymalna? Żeby znaleźć odpowiedź na powyższe pytanie, należy przeanalizować raport wrażliwości ograniczeń. Informuje on w jakich granicach mogą zmienić się prawe strony ograniczeń (wyrazy wolne), żeby baza optymalna pozostała bez zmian. Zmianie ulegną optymalne wartości zmiennych bazowych oraz wartość funkcji celu. Artur Piątkowski WZ UW Strona 6
7 Wyraz wolny pierwszego ograniczenia (zasób surowca S 1 ) wynosi Może on wzrosnąć o 200 lub zmniejszyć się o 200, żeby baza optymalna pozostała bez zmian. Baza optymalna nie zmieni się, jeżeli zasób surowca S 1 będzie się zmieniać w granicach <800;1200>. Natomiast zmienią się optymalne wielości rozwiązania optymalnego oraz wartość funkcji celu. Z raportu wrażliwości ograniczeń można odczytać wartości cen dualnych: Cena dualna informuje nas, o ile się zmieni wartość funkcji celu, jeżeli zwiększymy wyraz wolny (zasób surowca) ograniczenia o jednostkę. Nową wartość funkcji celu można obliczyć wykorzystując cenę dualną. Jeżeli zwiększymy zasób surowca o 100 kg, to funkcja celu zmieni się w następujący sposób: *100= W celu określenia wartości nowego rozwiązania optymalnego należy zmienić prawą stronę pierwszego ograniczenia w arkuszu kalkulacyjnym Excel i ponownie rozwiązać model z wykorzystaniem dodatku Solver. Artur Piątkowski WZ UW Strona 7
8 Zmienne bazowe X 1 *, X 2 *, X 5 * nadal tworzą bazę optymalną modelu. Zmieniła się tylko ich wartość. Nowe wartości zmiennych bazowych wynoszą: Odp6.: Wzrost zasobu surowca S 1 do 1100 (o 100 jednostek) spowoduje zmianę rozwiązania optymalnego. Nowe optymalne rozmiary produkcji wynoszą: 300 jednostek wyrobu W 1 oraz 500 jednostek wyrobu W 2 (X * 1 =300, X * 2 =500). Taka kombinacja produkcji wyrobów gwarantuje nowy maksymalny przychód ze sprzedaży, który wynosi zł. Baza optymalna nie zmieni się, jeżeli zasób surowca S 1 będzie zmieniać się w granicach <800; 1200>. (7) Czy zwiększenie zapasów surowca S 1 jest korzystne z ekonomicznego punktu widzenia, jeżeli koszt jednorazowego sprowadzenia 100 kg surowca S 1 wynosi 2000 zł? Jeżeli nie, to jaka cena za kilogram jest opłacalna? Należy zmniejszyć funkcję celu o koszt sprowadzenia 100 kg surowca S 1 oraz porównać wynik z poziomem funkcji celu sprzed zwiększenia zasobu: Artur Piątkowski WZ UW Strona 8
9 Opłacalne jest sprowadzenie surowca S 1, jeżeli jego cena za kilogram będzie niższa niż cena dualna y 1 *=10. Odp7.: Zwiększenie zapasów surowca S 1 nie jest korzystne z ekonomicznego punktu widzenia, ponieważ koszty sprowadzenia 100 kg surowca przewyższają przychód ze sprzedaży nowych wyrobów. Każda cena, która będzie niższa niż 10 zł za kilogram, będzie opłacalna. (8) Czy i jak rozwiązanie optymalne ulegnie zmianie, jeżeli zasób surowca S 2 zmniejszy się do 2100 kg? Czy zmieni się baza optymalna? Wyraz wolny drugiego ograniczenia (zasób surowca S 2 ) wynosi Może on wzrosnąć o 600 lub zmniejszyć się o 600, żeby baza optymalna pozostała bez zmian. Baza optymalna nie zmieni się, jeżeli zasób surowca S 2 będzie się zmieniać w granicach <1800;3000>. Natomiast zmienią się optymalne wielości rozwiązania optymalnego oraz wartość funkcji celu. Nową wartość funkcji celu można obliczyć wykorzystując cenę dualną. Cena dualna informuje nas, o ile się zmieni wartość funkcji celu, jeżeli zwiększymy wyraz wolny (zasób surowca) ograniczenia o jednostkę. Jeżeli zmniejszymy zasób surowca o 300 kg, to funkcja celu zmieni się w następujący sposób: Artur Piątkowski WZ UW Strona 9
10 W celu określenia wartości nowego rozwiązania optymalnego należy zmienić prawą stronę drugiego ograniczenia w arkuszu kalkulacyjnym Excel i ponownie rozwiązać model z wykorzystaniem dodatku Solver. Zmienne bazowe X 1 *, X 2 *, X 5 * nadal tworzą bazę optymalną modelu. Zmieniła się tylko ich wartość. Nowe wartości zmiennych bazowych wynoszą: Odp8.: Zmniejszenie zasobu surowca S 1 do 2100 kg spowoduje zmianę rozwiązania optymalnego. Nowe optymalne rozmiary produkcji wynoszą: 300 jednostek wyrobu W 1 oraz 400 jednostek wyrobu W 2 (X * 1 =300, X * 2 =400). Taka kombinacja produkcji wyrobów gwarantuje nowy maksymalny przychód ze sprzedaży, który wynosi zł. Baza optymalna nie zmieni się, jeżeli zasób surowca S 2 będzie zmieniać się w granicach <1800; 3000>. (9) Czy opłaca się zwiększyć zasób surowca S 3 do 2000 kg? W jakich granicach można zmieniać poziom surowca S 3, żeby baza optymalna nie zmieniła się? Artur Piątkowski WZ UW Strona 10
11 Wyraz wolny trzeciego ograniczenia (zasób surowca S 3 ) wynosi 600. Może on wzrastać do nieskończoności lub zmniejszyć się o 300, żeby baza optymalna pozostała bez zmian. ) ) Baza optymalna nie zmieni się, jeżeli zasób surowca S 3 będzie się zmieniać w granicach <300; ). Nie opłaca się zwiększać zasobu surowca S 3, ponieważ wzrost zapasu surowca o jednostkę nie zmieni wielkości funkcji celu. Wzrost zasobu surowca S 3 nie wpłynie na przychód ze sprzedaży wyrobów, ponieważ cena dualna wynosi zero. Odp9.: Nie opłaca się zwiększać zasobu surowca S 3, ponieważ cena dualna (wzrost zasobu surowca S 3 nie wpłynie na przychód ze sprzedaży wyrobów). Baza optymalna nie zmieni się, jeżeli poziom surowca S 3 będzie zmieniać się w przedziale ) (10) Zbudować zadanie dualne do zadania prymalnego oraz rozwiązać je z wykorzystaniem dodatku Solver, który znajduje się w arkuszu kalkulacyjnym MS Excel ZADANIE PRYMALNE Zmienne decyzyjne: ść ść Artur Piątkowski WZ UW Strona 11
12 Warunki ograniczające: Funkcja celu: ZADANIE DUALNE Nowe zmienne decyzyjne (zmienne dualne, ceny dualne): prymalnego: Transpozycja macierzy współczynników warunków ograniczających zadania [ ] * + Warunki ograniczające: Funkcja celu: Następnie należy zaimplementować model (program) do arkusza kalkulacyjnego oraz rozwiązać go z wykorzystaniem dodatku Solver: Artur Piątkowski WZ UW Strona 12
13 Nowe zmienne decyzyjne (zmienne dualne) osiągnęły wartość optymalną na poziomie:. Funkcja celu dla wartości optymalnych osiągnęła wartość zł. Funkcja celu zadania dualnego ( jak funkcja celu zadania prymalnego ( ) gdzie: ) osiągnęła taką samą wartość ł Odp10.: Rozwiązaniem optymalnym zadania dualnego jest:. Przy takim rozwiązaniu optymalnym funkcja celu osiąga wartość równą ł. (11) Ile jest co najwyżej rozwiązań bazowych programu dualnego? Zapisujemy warunki ograniczające w postaci kanonicznej: Tworzymy macierz A, która jest macierzą współczynników stojących po lewej równań: * + Powstała macierz o dwóch rzędach m=2 oraz pięciu kolumnach n=5. Jeżeli n>m (5>3), to układ ma nieskończenie wiele rozwiązań, ale skończoną liczbę rozwiązań bazowych. Wykorzystując symbol Newtona, który jest funkcją dwóch argumentów całkowitych Artur Piątkowski WZ UW Strona 13
14 nieujemnych, można określić wszystkie kombinacje dwuelementowe (m=2) ze zbioru pięcioelementowego (n=5). W takim wypadku mamy co najwyżej: Odp11.: Program dualny posiada co najwyżej 10 rozwiązań bazowych. (12) Wymień zmienne bazowe oraz niebazowe programu dualnego. y 1 * oraz y 2 * to zmienne decyzyjne, które są bazowe, ponieważ ich wartość wynosi odpowiednio 10 i (są większe od zera). y 3 *, y 4 * oraz y 5 * to zmienne niebazowe, ponieważ przyjmują wartość równą zero. Zmienne bazowe y 1 *oraz y 2 * tworzą bazę optymalną programu dualnego! Odp12.: Program dualny posiada dwie zmienne bazowe: y 1 * =10, y 2 * = (baza optymalna) oraz trzy zmienne niebazowe: y 3 * =0, y 4 * =0, y 5 * =0. Artur Piątkowski WZ UW Strona 14
15 Literatura 1. Guzik B. (2009). Wstęp do badań operacyjnych. Wydawnictwo Uniwersytetu Ekonomicznego, Poznań. 2. Kukuła K. (1999). Badania operacyjne w przykładach i zadaniach. PWN, Warszawa. 3. Lipiec-Zajchowska M. Wspomaganie procesów decyzyjnych. Tom III. Badania Operacyjne, Wyd. C.H. Beck, Warszawa Radzikowski W. (1994). Badania operacyjne w zarządzaniu. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. 5. Sikora W. (2008). Badania operacyjne. PWE, Warszawa. Artur Piątkowski WZ UW Strona 15
Badania Operacyjne Ćwiczenia nr 6 (Materiały)
Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 3 (Materiały)
Metoda analityczna Przed przystąpieniem do rozwiązania programu liniowego metodą analityczną, należy sprowadzić program do postaci KANONICZNEJ. Model o postaci kanonicznej to taki, w którym wszystkie warunki
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 1 (Materiały)
Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Bardziej szczegółowoWYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji
Bardziej szczegółowoPrzykład: frytki i puree Analiza wrażliwości współczynników funkcji celu
Analiza wrażliwości: współczynników funkcji celu analiza wrażliwości pozwala odpowiedzieć na pytanie, w jakich granicach mogą się zmieniać te parametry, aby dotychczasowe rozwiązanie było optymalne, wyrazów
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Bardziej szczegółowoWYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM GOSPODARKI ELEKTROENERGETYCZNEJ INSTRUKCJA DO ĆWICZENIA 5 Planowanie
Bardziej szczegółowoMETODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Bardziej szczegółowoRozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Bardziej szczegółowoWprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Bardziej szczegółowoProgramowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Bardziej szczegółowoBadania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych
Bardziej szczegółowoZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Bardziej szczegółowoZad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto
Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)
Bardziej szczegółowoFirma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2.
Przykład Elementy analizy wrażliwości Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Dla wyrobu 2 czasy te wynosza
Bardziej szczegółowoZadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Bardziej szczegółowoROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Bardziej szczegółowoLaboratorium Metod Optymalizacji. Sprawozdanie nr 1
PAWEŁ OSTASZEWSKI PIŁA, dn. 01.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 1 1. TREŚĆ ZADANIA: Producent soku jabłkowego posiada fabryki w trzech miastach A, B i C. Sok jest
Bardziej szczegółowoRozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Bardziej szczegółowoTeoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Bardziej szczegółowoEkonometria - ćwiczenia 11
Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy
Bardziej szczegółowoNotatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową
Bardziej szczegółowoOPTYMALIZACJA PROCESÓW LOGISTYCZNYCH
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza Wydział Zarządzania Katedra Metod Ilościowych OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH Prowadzący: dr Tomasz Pisula e-mail: tpisula@prz.edu.pl Treści kształcenia:
Bardziej szczegółowo1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Bardziej szczegółowoMetoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Bardziej szczegółowoMicrosoft EXCEL SOLVER
Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Bardziej szczegółowoPROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Bardziej szczegółowoĆwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
Bardziej szczegółowoDefinicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Bardziej szczegółowoBadania operacyjne. Ćwiczenia 1. Wprowadzenie. Filip Tużnik, Warszawa 2017
Badania operacyjne Ćwiczenia 1 Wprowadzenie Plan zajęć Sprawy organizacyjne (zaliczenie, nieobecności) Literatura przedmiotu Proces podejmowania decyzji Problemy decyzyjne w zarządzaniu Badania operacyjne
Bardziej szczegółowoExcel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowo6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego
6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego Analiza wrażliwości est studium analizy wpływu zmian wartości różnych parametrów modelu PL na rozwiązanie optymalne. Na optymalne
Bardziej szczegółowoDodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Bardziej szczegółowoĆwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bardziej szczegółowoMetoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Bardziej szczegółowoProgramowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Bardziej szczegółowoDualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Bardziej szczegółowoALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007
ALGORYTM SIMPLEX 7 Zagadnienie asortymentu produkcji Firma produkuje dwa wyroby P, P. Ograniczeniem dla produkcji są trzy surowce S, S i S.Nakłady jednostkowe surowców są następujące: S S S Zysk jednostkowy
Bardziej szczegółowoRozwiązywanie programów matematycznych
Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Bardziej szczegółowoIwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ
1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia
Bardziej szczegółowoUkłady równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Bardziej szczegółowo( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa
Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Bardziej szczegółowoZagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:
Programowanie liniowe. 1. Aktywacja polecenia Solver. Do narzędzia Solver można uzyskać dostęp za pomocą polecenia Dane/Analiza/Solver, bądź Narzędzia/Solver (dla Ex 2003). Jeżeli nie można go znaleźć,
Bardziej szczegółowoDocument: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Bardziej szczegółowoPrzykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie
Bardziej szczegółowo4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Bardziej szczegółowoMETODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX
Bardziej szczegółowo1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że
Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli
Bardziej szczegółowoLista 1 PL metoda geometryczna
Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoUkłady równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Bardziej szczegółowoSzukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Bardziej szczegółowoEkonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Bardziej szczegółowoBADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoWspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02
Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,
Bardziej szczegółowoBADANIA OPERACYJNE ANALITYKA GOSPODARCZA
BADANIA OPERACYJNE ANALITYKA GOSPODARCZA Egzamin pisemny 8.4.7 piątek, salae-6, godz. 8:-9:3 OBECNOŚĆ OBOWIĄZKOWA!!! Układ egzaminu. TEST z teorii: minut (test wielostronnego wyboru; próg 75%). ZADANIA:
Bardziej szczegółowo=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Bardziej szczegółowoTOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Bardziej szczegółowo3.2. RÓWNANIA I NIERÓWNOŚCI LINIOWE.
.. RÓWNANIA I NIERÓWNOŚCI LINIOWE. m równania (pierwiastkiem równania) z jedną niewiadomą nazywamy liczbę, która spełnia dane równanie, tzn. jeśli w miejsce niewiadomej podstawimy tę liczbę, to otrzymamy
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowo8. WYBRANE ZASTOSOWANIA MODELI EKONOMETRYCZNYCH
39 8. WYBRANE ZASTOSOWANIA MODELI EKONOMETRYCZNYCH 8.1. Funkcje popytu i elastyczności popytu 8.1.1. Czynniki determinujące popyt i ich wpływ Załóżmy, że hipoteza ekonomiczna dotycząca kształtowania się
Bardziej szczegółowoRozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
Bardziej szczegółowoStandardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Bardziej szczegółowoZadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"
Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem
Bardziej szczegółowoAnaliza progu rentowności
Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka
Bardziej szczegółowoSpis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna
Bardziej szczegółowoA. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie
Bardziej szczegółowoSurowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x
Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca
Bardziej szczegółowo1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Bardziej szczegółowowszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Bardziej szczegółowoAlgorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Bardziej szczegółowoPrzykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań:
Przykład 2 układ o rozwiązaniu z parametrami Rozwiążemy następujący układ równań: Po zapisaniu układu w postaci macierzy rozszerzonej będziemy dążyć do uzyskania macierzy jednostkowej po lewej stronie
Bardziej szczegółowoAnaliza danych przy uz yciu Solvera
Analiza danych przy uz yciu Solvera Spis treści Aktywacja polecenia Solver... 1 Do jakich zadań wykorzystujemy Solvera?... 1 Zadanie 1 prosty przykład Solvera... 2 Zadanie 2 - Optymalizacja programu produkcji
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Modele liniowe.......................... 5 1.1.
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowoArkusz kalkulacyjny Excel
Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim
Bardziej szczegółowoc j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
Bardziej szczegółowoElementy modelowania matematycznego
Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300
Bardziej szczegółowoSTUDIA I STOPNIA EGZAMIN Z EKONOMETRII
NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków
Bardziej szczegółowoZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
Bardziej szczegółowoKolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowo