1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "1-2. Formułowanie zadań decyzyjnych. Metoda geometryczna"

Transkrypt

1 -. Formułowanie zadań decyzyjnych. Metoda geometryczna Zagadnienie wyznaczania optymalnego asortymentu produkcji Firma zamierza uruchomić produkcję dwóch wyrobów A i B. Cenę zbytu oszacowano na zł/kg dla każdego z wyrobów. Możliwości przerobu dwóch surowców które limitują możliwości produkcyjne wynoszą odpowiednio 8 i 4 t w okresie planistycznym. Pozostałe środki produkcji nie ograniczają wielkości produkcji. Nakłady surowców (kg) niezbędne do wytworzenia jednostki wyrobów podaje tabela. 6 4 A = 3 4 a) Wyznaczyć plan produkcji maksymalizujący przychód, b) Powiedzmy, że wielkość produkcji wyrobu A nie może przekroczyć 000 sztuk. W jaki sposób wpłynie to na rozwiązanie z pkt. a) i wielkość przychodu? c) Wielkość produkcji wyrobu A nie może przekroczyć wielkości produkcji wyrobu B. W jaki sposób wpłynie to na rozwiązanie z pkt. a) i wielkość przychodu? d) W jakim przedziale musi zawierać się cena wyrobu A, aby zmiana ceny nie wpłynęła na rozwiązanie z pkt. a)? Czy zmiany ceny wpłyną na wartość przychodu? e) Jakie założenia ekonomiczne trzeba było przyjąć aby problem wyznaczania optymalnego asortymentu produkcji można było sprowadzić do zadania PL? f) O popełnieniu jakich błędów modelowania świadczy brak skończonego optimum oraz pustość zbioru rozwiązań dopuszczalnych? Zagadnienie rozkroju Tartak otrzymał zamówienie na 00 desek o długości m, 50 desek o długości,5m i 00 desek o długości 3,5m. Deski otrzymuje się dokonując cięcia kłód o długości 0m. a) Wyznaczyć kombinację sposobów rozkroju kłód minimalizującą wielkość odpadu. W jaki sposób można zagwarantować niesprzeczność zadania? b) W jaki sposób liczba rozkrojów wpływa na rozwiązanie? Czy jest celowe generowanie dużej liczby rozkrojów? c) Podać uzasadnienie ekonomiczne wykorzystywania funkcji postulującej minimalizację odpadu. Zagadnienie diety Racjonalna hodowla trzody chlewnej wymaga dostarczenia co najmniej 4 kg składnika odżywczego S i 49 kg S oraz nie więcej niż 70 kg S3 dziennie. Składniki te dostarcza się skarmiając trzodę dwoma paszami : P i P. Zawartość składników odżywczych w paszach (kg/kg) oraz ceny ich zakupu (zł/kg) podaje tabela. Składnik Pasza odżywczy P P S 0,04 0, S 0,4 0,07 S3 0, 0, Cena zbytu 3,5 Ilość dziennie dostarczanych pasz wynosi 500 kg. a) Ustalić dzienne zapotrzebowanie na pasze P i P minimalizujące koszty zakupu, zapewniające dostarczenie składników odżywczych w wymaganych ilościach. b) Przy jakiej cenie paszy P nastąpi zmiana rozwiązania z pkt. a)? c) Powiedzmy, że dziennie możemy dostarczać 400 kg pasz. W jaki sposób wpłynie to na rozwiązanie z pkt. a)?

2 Problem wyboru optymalnego składu mieszanki Dwa gatunki węgla A i B zawierają zanieczyszczenia w postaci fosforu i popiołu. W pewnym procesie przemysłowym potrzeba co najmniej 90 t paliwa zawierającego nie więcej niż 0,03% fosforu i nie więcej niż 4% popiołu. Stopień zanieczyszczenia obu gatunków węgla oraz ceny zakupu podaje tabela. Gatunek Zanieczyszczenia (%) Cena zbytu węgla Fosfor Popiół (zł/t) A 0, B a) W jakiej proporcji należy zmieszać gatunki węgla, aby uzyskać paliwo o minimalnym koszcie spełniające normy ekologiczne? b) Powiedzmy że cena węgla gatunku B wzrosła do 500 zł/t. W jaki sposób wpłynie to na rozwiązanie optymalne z pkt. a) i koszt zakupu? c) Dokonano złagodzenia norm ekologicznych dopuszczając maksymalną zawartość fosforu w paliwie w wysokości 0,04%. W jaki sposób wpłynie to na rozwiązanie z pkt. a)? Metoda geometryczna : przykłady zadań Rozwiązać następujące zadania programowania liniowego. Przeprowadzić analizę wrażliwości dla wag przy zmiennych decyzyjnych i prawych stron. Przeprowadzić analizę wrażliwości dla wag i prawych stron. x 6x 3x + x + 4x x, x + 4x 0 max 4 8 x 4x 3x x + 3x + 3x + 6x x x, x 0 min 8 4x x x + x x + x x x, x max

3 3. Programowanie wielokryterialne Zagadnienie wyznaczania optymalnej strategii marketingowej W tabeli podano zyski (mln zł) i udział w rynku (%), jaki firma spodziewa się osiągnąć stosując wybrane strategie marketingowe. Kryteria Strategie marketingowe A B C D E Zysk (mln zł) ( f ) Udział w rynku (%) ( f ) a) Wyznaczyć strategie Pareto optymalne w przestrzeni kryterialnej. b) Wyznaczyć strategie Pareto optymalne konstruując diagram Hassego. c) Powiedzmy, że wyniku powtórnej ewaluacji strategii przyjęto, że zysk w przypadku strategii D będzie wynosić 3 mln zł. Czy zbiór strategii Pareto - optymalnych ulegnie zmianie? d) Zakładając, że osiągniecie dużego udziału w rynku jest dwa razy ważniejsze od realizacji zysku, wyznaczyć strategię optymalną wykorzystując właściwe metakryterium. Zagadnienie oceny efektywności funkcjonowania kopalni W tabeli podano trzy podstawowe parametry: zysk (w zł/ton), wydajność (w tonach na osobę), wypadkowość (liczba zabitych/ mln ton) dla 5 kopalń należących do holdingu węglowego. Kryteria A B C D E Zysk Wydajność Wypadkowość a) Utworzyć macierz stopni realizacji celów cząstkowych. b) Uporządkować kopalnie kierując się maksymalizacją minimalnych stopni realizacji celów cząstkowych. c) Na podstawie macierzy stopni realizacji, stosując właściwe metakryterium z wagami /, /4, /4, uporządkować kopalnie od najlepszej do najgorszej. d) Które kopalnie należy zamknąć, jeżeli wiadomo, że wydajność w każdej z kopalń musi być nie mniejsza niż 40% wydajności w kopalni najlepszej? Czy po zmodyfikowaniu zbioru kopalń, w powtórnie sporządzonym rankingu, relacje między kopalniami będą takie same jak w rankingu wyjściowym? 3

4 4. Podejmowanie decyzji w warunkach niepewności Zagadnienie wyboru struktury zasiewów Rolnik na polu o powierzchni 0 ha może uprawiać pszenicę, żyto, lub na połowie areału pszenicę a na połowie żyto. Przychody jakie przynosi uprawa zbóż zależą od warunków pogodowych wywierających wpływ na wielkość plonów oraz koniunktury na płody rolne decydującej o cenie zbytu. W tab. podano wielkość spodziewanych zbiorów (q/ha) dla uprawianych zbóż w zależności od stanu pogody, a w tab. ceny zbytu zbóż w zależności od koniunktury gospodarczej (zł/t). Wielkość plonów Stan pogody P P Żyto 0 5 Pszenica 40 0 Tabela Ceny zbytu Koniunktura K K Żyto Pszenica Tabela Wyznaczyć optymalną decyzje dot. struktury zasiewów stosując regułę Walda, Hurvicza (dla współczynnika optymizmu równego 0,5), Savage'a i Bayesa. Wyznaczając stany natury przyjąć, że koniunktura na płody rolne praktycznie nie zależy od stanu pogody. 4

5 5. Teoria gier Problem opanowania rynku na jednorodny produkt Macierz wypłat opisuje szacowane zyski dwóch firm pragnących opanować rynek na pewien produkt. Zakłada się, że potencjalny popyt jest mniejszy od sumy zdolności produkcyjnych obu firm. Każda z firm dysponuje dwiema strategiami : W - wejść na rynek, N - zrezygnować. I W N II W (, ) (0, 5) N (7, 0) (0, 0). a) Uzasadnić strukturę wypłat. b) Wyznaczyć równowagę w sensie Nasha. Jeżeli istnieje więcej równowag, która z nich zostanie wybrana z większym prawdopodobieństwem? c) Czy można oczekiwać współpracy firm? d) Powiedzmy, że wypłatę (-,-) zastępuje wypłata (,). Czy odpowiedź na pytanie z pkt. c) ulegnie zmianie? 5

6 6. Drzewa decyzyjne Zagadnienie wyboru strategii prowadzenia prac badawczo - rozwojowych W tabeli podano wielkość nakładów, zysków oraz prawdopodobieństwa ich osiągnięcia związanych z wyborem jednej z konkurencyjnych metod prowadzenia prac badawczo-rozwojowych. Metoda Nakłady (mln dol.) Wynik Prawdopodobieństwo wyniku Zysk (mln dol.) bez wydatków na B+R Biochemiczna 0 Sukces 0,7 90 Porażka 0,3 50 Biogenetyczna 0 Sukces 0, 00 Porażka 0,8 0 Skonstruować drzewa decyzyjne pozwalające na wyznaczenie oczekiwanego zysku w przypadku, gdy prace nad metodą biochemiczną i biogenetyczną mogą być prowadzone równolegle. 6

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7 Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Badania operacyjne. Lista zadań projektowych nr 2

Badania operacyjne. Lista zadań projektowych nr 2 Badania operacyjne Lista zadań projektowych nr 2 1. Trzy PGR-y mają odstawić do czterech punktów skupu pszenicę w następujących ilościach: PGR I - 100 ton, PGR II - 250 ton, PGR III - 100 ton. Punkty skupu

Bardziej szczegółowo

Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto

Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE)

PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) PROGRAMOWANIE WIELOKRYTERIALNE (CELOWE) Przykład 14. Zakład zamierza rozpocząć produkcję wyrobów W 1 i W 2. Wśród środków produkcyjnych, które zostaną użyte w produkcji dwa są limitowane. Limity te wynoszą:

Bardziej szczegółowo

METODY OBLICZENIOWE OPTYMALIZACJI zadania

METODY OBLICZENIOWE OPTYMALIZACJI zadania METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed

Bardziej szczegółowo

Gry z naturą 1. Przykład

Gry z naturą 1. Przykład Gry z naturą 1 Gry z naturą to gry dwuosobowe, w których przeciwnikiem jest natura. Przeciwnik ten nie jest zainteresowany wynikiem gry, a więc grę rozwiązuje się z punktu widzenia jednego z graczy. Optymalną

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych"

Zadanie laboratoryjne Wybrane zagadnienia badań operacyjnych Zadanie laboratoryjne "Wybrane zagadnienia badań operacyjnych" 1. Zbudować model optymalizacyjny problemu opisanego w zadaniu z tabeli poniżej. 2. Rozwiązać zadanie jak w tabeli poniżej z wykorzystaniem

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Ekonometria Programowanie Liniowe. Robert Pietrzykowski

Ekonometria Programowanie Liniowe. Robert Pietrzykowski Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy

Bardziej szczegółowo

4. PROGRAMOWANIE LINIOWE

4. PROGRAMOWANIE LINIOWE 4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych

Wprowadzenie do badań operacyjnych Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie

Bardziej szczegółowo

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,

Bardziej szczegółowo

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Lista 1 PL metoda geometryczna

Lista 1 PL metoda geometryczna Lista 1 PL metoda geometryczna 1.1. Znajdź maksimum funkcji celuf(x 1,x 2 )=5x 1 +7x 2 przy ograniczeniach: 2x 1 +2x 2 600, 2x 1 +4x 2 1000, x i 0 dlai=1,2 1.2. Znajdź maksimum funkcji celuf(x 1,x 2 )=2x

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego. Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość

Bardziej szczegółowo

Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa

Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa dr Jarosław Kotowicz 02 października 2015r. Zadanie 1 ([1, Przykład

Bardziej szczegółowo

Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700

Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 Zagadnienie diety Marta prowadzi hodowlę zwierząt. Minimalne dzienne zapotrzebowanie hodowli na mikroelementy M1, M2 i M3 wynosi 300, 800 i 700 jednostek, przy czym dla mikroelementu M1 maksymalna dzienna

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

1 Przykładowe klasy zagadnień liniowych

1 Przykładowe klasy zagadnień liniowych & " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia

Bardziej szczegółowo

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie

Bardziej szczegółowo

Mikroekonomia II: Kolokwium, grupa II

Mikroekonomia II: Kolokwium, grupa II Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Badania Operacyjne Ćwiczenia nr 1 (Materiały) Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Podstawowe warunki konkurencyjności koksowni na wolnym rynku

Podstawowe warunki konkurencyjności koksowni na wolnym rynku Podstawowe warunki konkurencyjności koksowni na wolnym rynku Edward Szlęk Prezes Zarządu JSW KOKS S.A. Konferencja naukowo-techniczna KOKSOWNICTWO 2014 Wyzwania dla konkurencyjnej koksowni Spełnienie wymagań

Bardziej szczegółowo

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych MENEDŻER. Wprowadzenie do problematyki decyzji menedżerskich. Mgr Piotr Urbaniak

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych MENEDŻER. Wprowadzenie do problematyki decyzji menedżerskich. Mgr Piotr Urbaniak Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych MENEDŻER Wprowadzenie do problematyki decyzji menedżerskich Mgr Piotr Urbaniak Wprowadzenie 1 2 3 4 Czym jest ekonomia menedżerska? Etapy

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1]

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne [1] Co to są badania operacyjne? Termin "badanie operacji" (Operations' Research) powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23 Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

Rozwiązaniem Pareto-optymalnym jest łamana ABC. x 2 A 2 6 B 10 7,5. x 1

Rozwiązaniem Pareto-optymalnym jest łamana ABC. x 2 A 2 6 B 10 7,5. x 1 Zadanie ). (PROGRMOWNIE WIELOKRYTERILNE IĄGŁE): a) pełen model dla zadania dwukryterialnego: obszar uprawy pszenicy [ha] obszar uprawy ziemniaków [ha] fc1: +15 max (dochody) istnieje izokwanta przecinająca

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Rachunki Decyzyjne. Katedra Rachunkowości US

Rachunki Decyzyjne. Katedra Rachunkowości US Rachunki Decyzyjne Katedra Rachunkowości US Rachunki Decyzyjne Wykorzystywane do optymalizacji efektów przy istniejącym profilu działalności w krótkich okresach czasu. Podstawą analizy są relacje pomiędzy

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

Jaka będzie cena śruty sojowej?

Jaka będzie cena śruty sojowej? .pl https://www..pl Jaka będzie cena śruty sojowej? Autor: Ewa Ploplis Data: 19 kwietnia 2017 Prawdopodobnie ceny śruty sojowej nie ulegną dużym zmianom. W pierwszej połowie 2017 r. powinny być relatywnie

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa cz.2

Wielokryteriowa optymalizacja liniowa cz.2 Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład: Programowanie liniowe. 1. Aktywacja polecenia Solver. Do narzędzia Solver można uzyskać dostęp za pomocą polecenia Dane/Analiza/Solver, bądź Narzędzia/Solver (dla Ex 2003). Jeżeli nie można go znaleźć,

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe

Bardziej szczegółowo

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ 1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia

Bardziej szczegółowo

Wyznacz łączne zmiany wartości, ilości i cen sprzedaży w październiku i listopadzie oraz zinterpretuj otrzymane wyniki.

Wyznacz łączne zmiany wartości, ilości i cen sprzedaży w październiku i listopadzie oraz zinterpretuj otrzymane wyniki. ZAD.1. Dane dotyczące zależności pomiędzy wielkością plonów w q/ha (y), a zużyciem określonego nawozu w kg/ha dla 7 niezależnych upraw przedstawia tabela: y X 17 11 19 15 19 20 20 25 20 24 22 39 23 41

Bardziej szczegółowo

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia

Mikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1 1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje

Bardziej szczegółowo

Statystyka. Zadanie 1.

Statystyka. Zadanie 1. Statystyka Zadanie 1. W przedsiębiorstwie Statexport pracuje 100 pracowników fizycznych i 25 umysłowych. Typowy wiek pracownika fizycznego kształtuje się w przedziale od 30 do 40 lat. Średnia wieku pracowników

Bardziej szczegółowo

WOJEWÓDZTWO LUBELSKIE

WOJEWÓDZTWO LUBELSKIE Okręgowa Komisja Egzaminacyjna w Krakowie, Wydział Egzaminów Zawodowych os. Szkolne 37, 31 978 Kraków, tel. (1) 68 3 181-183 fax: (1) 68 3 18 e-mail: oke@oke.krakow.pl, egzzaw@oke.krakow.pl; www.oke.krakow.pl

Bardziej szczegółowo

Podejmowanie decyzji gospodarczych

Podejmowanie decyzji gospodarczych Podejmowanie decyzji gospodarczych Zakres podejmowanych decyzji jest bardzo szeroki zarówno na poziomie przedsiębiorstwa jak i na szczeblu państwa. W każdym przypadku sensowna analiza wariantów decyzji

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie

Bardziej szczegółowo

PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH

PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia

Bardziej szczegółowo

PROBLEMY DECYZYJNE KRÓTKOOKRESOWE

PROBLEMY DECYZYJNE KRÓTKOOKRESOWE PROBLEMY DECYZYJNE KRÓTKOOKRESOWE OPTYMALNA STRUKTURA PRODUKCJI Na podstawie: J. Wermut, Rachunkowość zarządcza, ODDK, Gdańsk 2013 1 DECYZJE KRÓTKOOKRESOWE Decyzje krótkookresowe to takie, które dotyczą

Bardziej szczegółowo

Analiza korelacji i regresji dwóch zmiennych losowych

Analiza korelacji i regresji dwóch zmiennych losowych Analiza korelacji i regresji dwóch zmiennych losowych 1. Badano zależność między ilością godzin przebywania samolotu w powietrzu ( nalot lotniczy) a ilością wypadków. Na podstawie zebranych danych z pewnego

Bardziej szczegółowo

Zawartość składników pokarmowych w roślinach

Zawartość składników pokarmowych w roślinach Zawartość składników pokarmowych w roślinach Poszczególne rośliny różnią się zawartością składników pokarmowych zarówno w organach wegetatywnych, jak i generatywnych. Wynika to z różnych funkcji, jakie

Bardziej szczegółowo

Sytuacja ekonomiczno-finansowa sektora cukrowniczego

Sytuacja ekonomiczno-finansowa sektora cukrowniczego Sytuacja ekonomiczno-finansowa sektora cukrowniczego Dr inż. Piotr SZAJNER IERiGZ-PIB ul. Świętokrzyska 20 PL 00-002 Warszawa E-mail: szajner@ierigz.waw.pl Plan prezentacji Wyniki finansowe przemysłu cukrowniczego;

Bardziej szczegółowo

Ocena potencjału biomasy stałej z rolnictwa

Ocena potencjału biomasy stałej z rolnictwa Ocena potencjału biomasy stałej z rolnictwa dr Zuzanna Jarosz Inżynieria rolnicza w ochronie i kształtowaniu środowiska Lublin, 23-24 września 2015 Głównym postulatem Unii Europejskiej, a także Polski,

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

METODA DEA W ANALIZIE EFEKTYWNOŚCI NAKŁADÓW NA GOSPODARKĘ ODPADAMI

METODA DEA W ANALIZIE EFEKTYWNOŚCI NAKŁADÓW NA GOSPODARKĘ ODPADAMI Katedra Statystyki METODA DEA W ANALIZIE EFEKTYWNOŚCI NAKŁADÓW NA GOSPODARKĘ ODPADAMI XX MIĘDZYNARODOWA KONFERENCJA NAUKOWA GOSPODARKA LOKALNA I REGIONALNA W TEORII I PRAKTYCE Mysłakowice k. Karpacza 17-18

Bardziej szczegółowo

METODY WIELOKRYTERIALNE

METODY WIELOKRYTERIALNE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 4 METODY WIELOKRYTERIALNE 4.3. ZADANIA Zadanie 4.1 Wykorzystując tryb konwersacyjny

Bardziej szczegółowo

Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego.

Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego. Wydział Matematyki Programowanie liniowe Ćwiczenia Zestaw. Modelowanie zadań programowania liniowego. Zadania dotyczące zagadnienia planowania produkcji Zadanie.. Zapisać następujące zadanie w postaci

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 6 (Materiały)

Badania Operacyjne Ćwiczenia nr 6 (Materiały) Otwarte zagadnienie transportowe Jeżeli łączna podaż dostawców jest większa niż łączne zapotrzebowanie odbiorców to mamy do czynienia z otwartym zagadnieniem transportowym. Warunki dla dostawców (i-ty

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

KONKURENCYJNOŚĆ PRODUKCJI SEKTORA ROLNEGO UKRAINY. Profesor dr hab. Tatjana Mostenska Państwowy Uniwersytet Przetwórstwa Żywności Ukrainy

KONKURENCYJNOŚĆ PRODUKCJI SEKTORA ROLNEGO UKRAINY. Profesor dr hab. Tatjana Mostenska Państwowy Uniwersytet Przetwórstwa Żywności Ukrainy KONKURENCYJNOŚĆ PRODUKCJI SEKTORA ROLNEGO UKRAINY Profesor dr hab. Tatjana Mostenska Państwowy Uniwersytet Przetwórstwa Żywności Ukrainy Konkurencyjność produkcji wyznaczają wskaźniki: jakości, właściwości

Bardziej szczegółowo

Ekonomiczne uwarunkowania rozwoju produkcji, oraz systemu obrotu roślin strączkowych na cele paszowe, jako czynnik bezpieczeństwa żywnościowego kraju

Ekonomiczne uwarunkowania rozwoju produkcji, oraz systemu obrotu roślin strączkowych na cele paszowe, jako czynnik bezpieczeństwa żywnościowego kraju Uniwersytet Przyrodniczy w Poznaniu Zakład Rynków Finansowych i Towarowych w Gospodarce Żywnościowej Ekonomiczne uwarunkowania rozwoju produkcji, oraz systemu obrotu roślin strączkowych na cele paszowe,

Bardziej szczegółowo

Środki produkcji Jedn. nakłady środka W1 Jedn. nakłady środka W2 I 6 6 II 10 5

Środki produkcji Jedn. nakłady środka W1 Jedn. nakłady środka W2 I 6 6 II 10 5 PROGRAMOWANIE LINIOWE ZADANIA TEKSTOWE 5. Zakład produkuje dwa typy wózków: S i H. Zysk ze sprzedaży jednego wózka typu S wynosi 2850 zł a wózka typu H 6270 zł. Koszt produkcji jednego wózka typu S wynosi

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Analiza wielokryterialna

Analiza wielokryterialna Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

Metody ilościowe w badaniach ekonomicznych

Metody ilościowe w badaniach ekonomicznych prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

KOSZTY W UJĘCIU ZARZĄDCZYM. Karolina Szyderska Anna Szymaniak

KOSZTY W UJĘCIU ZARZĄDCZYM. Karolina Szyderska Anna Szymaniak KOSZTY W UJĘCIU ZARZĄDCZYM Karolina Szyderska Anna Szymaniak KOSZTY W PROCESIE DECYZYJNYM Koszt stanowi wyrażone w pieniądzu celowe zużycie majątku trwałego i obrotowego, usług obcych, nakładów pracy oraz

Bardziej szczegółowo

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące

Bardziej szczegółowo

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia

Bardziej szczegółowo