GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY
|
|
- Bogusław Szulc
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, wi@amu.edu.pl
2 ROGRAM WYKŁADÓW RODZAJE RZUTÓW RZUT ŚRODKOWY RZUT RÓWNOLEGŁY RZUT ROSTOKĄTNY RZUT ERSEKTYWICZNY RZUT CECHOWANY RZUTY MONGE A RZUTY ROSTOKĄTNE RZUT AKSONOMETRYCZNY
3 ODSTAWOWE OJĘCIA GEOMETRII EUKLIDESOWEJ A - punkt a - płaszczyzna a - prosta
4 ODSTAWOWE OJĘCIA GEOMETRII EUKLIDESOWEJ AKSJOMATY określaą związki pomiędzy utworami podstawowymi przynależność uporządkowanie przystawanie ciągłość równoległość RZESTRZEŃ EUKLIDESOWA
5 ODSTAWOWE OJĘCIA GEOMETRII EUKLIDESOWEJ ODWZOROWANIE Z Z B A C A C B ODWZOROWANIE WZAJEMNIE JEDNOZNACZNE - RZEKSZTAŁCENIE
6 ODSTAWOWE OJĘCIA GEOMETRII EUKLIDESOWEJ 3D RZEKSZTAŁCENIA RZUT ŚRODKOWY S A A
7 ODSTAWOWE OJĘCIA GEOMETRII EUKLIDESOWEJ 3D RZEKSZTAŁCENIE RZUT RÓWNOLEGŁY k A A
8 ODSTAWOWE OJĘCIA GEOMETRII EUKLIDESOWEJ 3D RZEKSZTAŁCENIE RZUT RÓWNOLEGŁY k A A
9 RZUT RÓWNOLEGŁY 3D k A A rzut równoległy punktu - punkt
10 RZUT RÓWNOLEGŁY 3D k a A A a H a rzut równoległy proste - prosta
11 RZUT RÓWNOLEGŁY 3D k a H a = a rzut równoległy proste - punkt
12 RZUT RÓWNOLEGŁY 3D k a b a b H a H b rzut równoległy prostych równoległych - proste równoległe
13 RZUT RÓWNOLEGŁY 3D k a b H a = a H b = b rzut równoległy prostych równoległych - punkty
14 RZUT RÓWNOLEGŁY 3D k a b a =b H b a H a rzut równoległy prostych równoległych - prosta
15 RZUT RÓWNOLEGŁY 3D b k a a b rzut równoległy prostych przecinaących się - proste przecinaące się
16 RZUT RÓWNOLEGŁY 3D b k a A a B A =B b rzut równoległy prostych skośnych - proste przecinaące się
17 RZUT RÓWNOLEGŁY 3D b k a a b rzut równoległy prostych skośnych - prosta i punkt
18 RZUT RÓWNOLEGŁY b 3D k a rzut równoległy prostych skośnych - proste równoległe
19 RZUT RÓWNOLEGŁY 3D k l a rzut równoległy płaszczyzny - prosta
20 RZUT RÓWNOLEGŁY 3D a k a rzut równoległy płaszczyzny - płaszczyzna
21 RZUT ROSTOKĄTNY 3D k RZUT ROSTOKĄTNY TO RZUT RÓWNOLEGŁY W KIERUNKU ROSTOADŁYM DO RZUTNI
22 RZUT ROSTOKĄTNY 3D B A A f B k rzut prostokątny odcinka - odcinek
23 RZUT CECHOWANY 3D k (2) RZUT CECHOWANY TO RZUT ROSTOKĄTNY + CECHY UNKTÓW
24 RZUT CECHOWANY - UNKT 3D D C C (1) D (3) B B (0) A (-2) A rzut cechowany punktu
25 RZUT CECHOWANY - ROSTA 3D a H a a m a prosta w przestrzeni
26 RZUT CECHOWANY - ROSTA c b a rzut cechowany proste
27 RZUT CECHOWANY - ROSTA 3D a b b (2) a = H a prosta równoległa i prostopadła do rzutni
28 RZUT CECHOWANY - ŁASZCZYZNA 3D a s a -1 płaszczyzna w przestrzeni
29 RZUT CECHOWANY - ŁASZCZYZNA 3D a 1 a 0a -1 a s a s a m a 1-1 f m a 0 płaszczyzna w przestrzeni plan warstwicowy
30 RZUT CECHOWANY - ŁASZCZYZNA 3 a 2 a 1 a s a 3 2 ma plan warstwicowy warstwice m a linia spadu 3 a 2 a 1 a 3 a 2 a rzut cechowany płaszczyzny sposoby przedstawiania 1 a s a m a = m sa
31 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D b a H b H a b a proste równoległe w przestzreni
32 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW a a II b m a = m b b = c =d rzut cechowany prostych równoległych
33 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a 2 2 b H a a b H b proste przecinaące się w przestrzeni
34 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 2 b 1 = (1) a 0 rzut cechowany prostych przecinaących się
35 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a 2 b H a a b = H b proste przecinaące się w przestrzeni
36 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW b a rzut cechowany prostych przecinaących się
37 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW (?) a =b rzut cechowany prostych przecinaących się
38 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a H b b 2 b 2 H a a proste skośne w przestrzeni
39 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW b a 0 rzut cechowany prostych skośnych
40 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW a b c d rzut cechowany prostych skośnych
41 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D 2 A (2) 1 2 a 1 a 0a -1 a s a A (2 ) s a -1 punkt leżący na płaszczyźnie w przestrzeni
42 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3 a 2 a 1 a A (2) s a a rzut cechowany punktu i proste leżących na płaszczyźnie
43 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D 2 b a s a s b płaszczyzny równoległe w przestrzeni
44 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3 a 2 a 1 a s a 8 b 7 b 6 b s b 1 a II 8 b m a = m b = s a II s b rzut cechowany płaszczyzn równoległych
45 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a a 1 b s a prosta równoległa do płaszczyzny w przestrzeni
46 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3 a 2 a 1 a s a b a rzut cechowany proste równoległe do płaszczyzny
47 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3 a 2 a 1 a A (2) 3 1 s a b a rzut cechowany proste równoległe do płaszczyzny
48 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D k ab a b s a s b 0 płaszczyzny przecinaące się w przestrzeni
49 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 4 b 3 b 2 b k ab s b rzut cechowany płaszczyzn przecinaących się
50 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a s b 0 2 b s a k ab płaszczyzny przecinaące się w przestrzeni o warstwicach II
51 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW k bg 4b 3 b 2 b k ab s b k ag rzut cechowany płaszczyzn przecinaących się o warstwicach II
52 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D k ab 1 a 2 b 2 a s a s b 0 prosta przebiaąca płaszczyznę w przestrzeni
53 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW a 3 a 2 2 a 1 a s a 1 2 b s b 1 b rzut cechowany proste przebiaące płaszczyznę
54 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a s a 1 2 H s H a 1 0 s a H s H a m a,s m a prosta prostopadła do płaszczyzny w przestrzeni
55 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 1 a 2 a 3 a a 2 1 a 1 a m a = 1/m a = s a m a m a rzut cechowany proste prostopadłe do płaszczyzny
56 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW 3D a s b 0 2 b s a płaszczyzna prostopadła do płaszczyzny w przestrzeni
57 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW a a a b m b m a a 2 a 1 b 1 b 2 b 3 b 1 m a = 1/m b = s b rzut cechowany płaszczyzny prostopadłe do płaszczyzny
58 RZUT CECHOWANY - WZAJEMNE OŁOŻENIE ELEMENTÓW a a a b m a m b b 2 1 a b 1 1 a 2 m a = 1/m b 2 a a = a rzut cechowany proste prostopadłe do proste
59 RZUT CECHOWANY - OBRÓT 3D l r f S r 1 e obrót punktu wokół osi pionowe
60 RZUT CECHOWANY - OBRÓT (2) r l =S f 1(2) obrót punktu wokół osi pionowe
61 RZUT CECHOWANY - OBRÓT 1 a 2 a 3 a (1) r f l =S 1(1) obrót punktu wokół osi pionowe
62 RZUT CECHOWANY - OBRÓT 3D l a 2 e 2 a 1 2 f S(2) e 1 S (1) obrót proste wokół osi pionowe
63 RZUT CECHOWANY - OBRÓT 2 r f l =S (1) =S (2) 2 obrót proste wokół osi pionowe
64 RZUT CECHOWANY - OBRÓT b 2 f r 2 1 r 1 l =S (1) =S (2) r 1 r 2 f 1 2 obrót proste wokół osi pionowe
65 RZUT CECHOWANY - KŁAD KŁAD obrót przy następuących założeniach: - oś obrotu leży na rzutni (est pozioma) - kąt obrotu est taki aby punkt po obrocie znalazł się na rzutni OJĘCIA: - Oś obrotu = oś kładu. - Kąt obrotu = kąt kładu. - Kład o kąt /2 nazywamy kładem prostokątnym. - romień obrotu = promień kładu. - Środek obrotu = środek kładu.
66 RZUT CECHOWANY - KŁAD 3D A (2) oś kładu 2 2 A x (2) kład prostokątny punktu
67 RZUT CECHOWANY - KŁAD 2 x 1 x kład prostokątny proste
68 RZUT CECHOWANY - KŁAD 3D A (2) oś kładu r 2 r r x A x (2) A O (2) kład punktu
69 RZUT CECHOWANY - KŁAD 2 x 2 0 kład proste
70 RZUT CECHOWANY - KŁAD s 0 b = 1 b 2 b 3 b s b 2 x s x b kład płaszczyzny
71 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA
72 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA 65 m m
73 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA
74 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA H S 58, K
75 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA A 55, A ,4 profil powierzchni
76 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA linia spadu 1:2 m st 55,6 0,6m st linia stokowa
77 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA =1 1:m m 55, nachylenie w punkcie f
78 RZUT CECHOWANY OWIERZCHNIA TOOGRAFICZNA przekró dowolną płaszczyzną a m a 55,6! s a 54,
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.
Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.
Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość.
Grafika inżynierska geometria wykreślna 2. Przynależność. Równoległość. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.
Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE
SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr
Geometria wykreślna. Dr inż. Renata Górska
Dr inż. Renata Górska rgorska@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej L-5 Katedra Metod Obliczeniowych w Mechanice L-52 Projekty (sala 404 WIL): dr inż. Renata Górska dr
Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach.
A1 Zad. 1. Podaj definicję rzutu przestrzeni 3D na płaszczyznę D Zad.. Wymień wszystkie znane sposoby definicji płaszczyzny w przestrzeni 3D Zad. 3. Podaj definicję rzutu cechowanego Zad. 4. Co daje założenie
ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII
WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
Geometria wykreślna 7. Aksonometria
Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the
Spis treści. Słowo wstępne 7
Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
GEOMETRIA WYKREŚLNA ZADANIA TESTOWE
Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...
METODA RZUTÓW MONGE A (II CZ.)
RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE
RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak
3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie
Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl
RZUTOWANIE PROSTOKĄTNE
RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj
Wstęp do grafiki inżynierskiej
Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ
Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Sesja Naukowa objęta honorowym patronatem przez Jego Magnificencję Rektora Politechniki Śląskiej prof. dr hab. inż. Andrzeja
Grafika inżynierska i projektowanie geometryczne WF-ST1-GI--12/13Z-GRAF. Liczba godzin stacjonarne: Wykłady: 15 Zajęcia projektowe: 40
Karta przedmiotu Wydział: Wydział Finansów Kierunek: Gospodarka przestrzenna I. Informacje podstawowe Nazwa przedmiotu Grafika inżynierska i projektowanie geometryczne Nazwa przedmiotu w j. ang. Język
(a) (b) (c) o1" o2" o3" o1'=o2'=o3'
Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że
Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza
Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska
Definicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.
WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle
W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1
W. uzicki Zadanie 8 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 8. any jest sześcian (zobacz rysunek) o krawędzi równej 1. unkt S jest środkiem krawędzi. Odcinek W jest wysokością ostrosłupa
płaskie rzuty geometryczne
płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny
Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c).
Konstrukcje podstawowe 1. Konstrukcja elementu przynależnego (KEP) 1.1. przynależność punktu do prostej (typowe zadania to wykreślenie punktu leżącego na prostej A m oraz wykreślenia prostej przechodzącej
Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.
RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego
Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.
Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA
RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA
RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA WYKŁAD 2 dr inŝ. Beata Sadowska 1. Zasady rzutowania elementów i obiektów budowlanych 2. Rzuty budynku 3. Wymiarowanie rysunków architektoniczno-budowlanych Normy
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
RZUT CECHOWANY DACHY, NASYPY, WYKOPY
WYZNACZANIE DACHÓW: RZUT CECHOWANY DACHY, NASYPY, WYKOPY Ograniczymy się do dachów złożonych z płaskich wielokątów nazywanych połaciami, z linią okapu (linią utworzoną przez swobodne brzegi połaci) w postaci
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 209/2020 Kierunek studiów: Budownictwo Forma sudiów:
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Ćwiczenia nr 4. TEMATYKA: Rzutowanie
TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej
Grafika inżynierska geometria wykreślna
Grafika inżynierska geometria wykreślna 13. Powierzchnia topograficzna. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 08/09 Kierunek studiów: Budownictwo Forma sudiów:
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej
Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej 1. Perspektywa dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Budownictwo Forma
E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-E-0862-s1 Nazwa modułu Geometria i grafika inżynierska Nazwa modułu w języku angielskim
Ekoenergetyka Matematyka 1. Wykład 6.
Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej
Rzuty, przekroje i inne przeboje
Rzuty, przekroje i inne przeboje WYK - Grafika inżynierska Piotr Ciskowski, Sebastian Sobczyk Wrocław, 2015-2016 Rzuty prostokątne Rzuty prostokątne pokazują przedmiot z kilku stron 1. przedmiot ustawiamy
Geometria i grafika komputerowa
Geometria i grafika komputerowa Anna Franczyk Katedra Geoinformatyki i Informatyki Stosowanej Wydział Geologii, Geofizyki i Ochrony Środowiska Akademia Górniczo Hutnicza Kraków Podstawowe informacje gdzie
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Trójwymiarowa grafika komputerowa rzutowanie
Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM
LINIE WŁYWU przykład sposób kinematyczny SORZĄDZNIE LINII WŁYWU WIELKOŚCI STTYCZNYCH SOSOBEM KINEMTYCZNYM Sposób kinematyczny sporządzania linii wpływu wielkości statycznych polega na wykorzystaniu twierdzenia
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Geometria i grafika inżynierska Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
Funkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
O geometrii nieeuklidesowej. Andrzej Kotański
O geometrii nieeuklidesowej Andrzej Kotański Plan 1. Rys historyczny 2. Zaprzeczenie piątego pewnika Euklidesa 3. Modele geometrii eliptycznej i hiperbolicznej 4. Modele Beltramiego i Poincarego 5. Kąt
Widoki WPROWADZENIE. Rzutowanie prostokątne - podział Rzuty prostokątne dzieli się na trzy rodzaje: widoki,.przekroje, kłady.
Widoki WPROWADZENIE Rzutowanie prostokątne - podział Rzuty prostokątne dzieli się na trzy rodzaje: widoki, przekroje, kłady Widoki obrazują zewnętrzną czyli widoczną część przedmiotu Przekroje przedstawiają
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI
UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej
Grafika inżynierska geometria wykreślna. 9. Aksonometria
Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE
Zapis i Podstawy Konstrukcji Wprowadzenie. Rzuty prostokątne 1 WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE Zapis konstrukcji stanowi zbiór informacji
2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S
Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie
Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014
Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014 Ćwiczenie nr 1 Temat: Rzutowanie prostokątne punktu, odcinka, wycinka płaszczyzny i prostej bryły przestrzennej.
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 07/08 Kierunek studiów: Budownictwo Forma sudiów:
przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem
przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,
RYSUNEK ODRĘCZNY PERSPEKTYWA
RYSUNEK ODRĘCZNY PERSPEKTYWA P WYKŁAD 7 DR INś. BEATA SADOWSKA WTRĄCENIE (STROPODACHY WENTYLOWANE) WWW.BUILDEN.NEOSTRADA.PL, WWW.ABC-DACHY.PL WTRĄCENIE (STROPODACHY WENTYLOWANE) C.D. WTRĄCENIE (STROPODACHY
3. Model Kosmosu A. Einsteina
19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie
aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:
GRAFIKA KOMPUTEROWA Przekroje Kłady
Przekroje Przekroje służą do przedstawiania wewnętrznej budowy obiektów. Wybór odpowiedniego przekroju zależy od stopnia złożoności wewnętrznej budowy przedmiotu.. Przekroje całkowite to rzuty przedstawiające
Karta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Grafika inżynierska I Kod przedmiotu Status przedmiotu: obowiązkowy MBM 1 N 0 1 19-0_0 Język wykładowy:
WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA
RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA DR INŻ. ELŻBIETA RUDCZYK-MALIJEWSKA Wydział Budownictwa i Inżynierii Środowiska
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Kod modułu Geometria wykreślna i grafika komputerowa CAD. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu
Wygenerowano: 2017-10-02 16:54:58.414135, A-1-16-17 Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu Informacje ogólne Nazwa Geometria wykreślna Status Obowiązkowy Wydział / Instytut Instytut
WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA
WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA 311206 Lp Wiadomości wstępne, normy rysunkowe 1 Lekcja organizacyjna
... T"" ...J CD CD. Frez palcowy walcowo-cz%wy. RESZKA GRZEGORZ JG SERVICE, Lublin, PL POLITECHNIKA LUBELSKA, Lublin, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217266 (13) 81 (21) Numer zgłoszenia 392522 (51) Int.CI 823851/04 (2006.01) 823C 5/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019 Zasada trzech etapów (jeszcze raz) Trzy etapy, enaktywny, ikoniczny
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Kolektor. Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk. Wykonajmy model kolektora jak na rys. 1.
Kolektor Zagadnienia. Wyciągnięcia po profilach, Lustro, Szyk Wykonajmy model kolektora jak na rys. 1. Rysunek 1 Składa się on z grubszej rury, o zmiennym przekroju, leżącej w płaszczyźnie symetrii kolektora