OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
|
|
- Bogusław Grabowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia się potrzeba opisu pozycji i orientacji przedmiotów, narzędzi, a także samego mechanizmu. W celu umożliwienia określenia i przekształcenia wielkości matematycznych, opisujących pozycję i orientację, musimy zdefiniować układy wsp6łrzędnych oraz opracować zasady ich opisu. Wiele przedstawionych rozwiązań w związku z opisem pozycji i orientacji, będzie stanowiło bazę dla późniejszych rozważań dotyczących prędkości liniowych i kątowych, jak również sił i momentów sil. Przyjmujemy zasadę, że gdzieś w przestrzeni jest umieszczony globalny układ współrzędnych, względem którego będziemy mogli określać wszystkie rozpatrywane przez nas wielkości. Opiszemy wszystkie pozycje i orientacje względem globalnego układu osi współrzędnych lub względem innych układów współrzędnych kartezjańskich, których położenie jest (lub może być) określone względem układu globalnego. W celu umożliwienia opisu właściwości różnych obiektów którymi operuje układ manipulacyjny, wprowadza się odpowiedni formalizm zapisu. Wyżej wymienionymi obiektami mogą. być przedmioty, narzędzia, a nawet sam manipulator. Rozpatrujemy sposoby opisu pozycji, orientacji oraz bloków opisujących równocześnie pozycję i orientację. Opis pozycji Jeśli dany jest układ współrzędnych, to położenie dowolnego punktu w przestrzeni możemy określić za pomocą wektora pozycji (3x1). Ze względu na to, że obok globalnego układu współrzędnych będziemy często wprowadzać dodatkowo inne układy współrzędnych, wektory muszą zawierać również informację identyfikującą układ współrzędnych, w którym zostały określone. Oznaczenia wektorów są poprzedzane górnym indeksem wskazującym układ współrzędnych, w którym zostały zdefiniowane (nawet wtedy, gdy wynika to w sposób oczywisty z kontekstu), np. A oznacza, że wartości liczbowe składowych wektora A odpowiadają współrzędnym wzdłuż osi układu (A). Wartości współrzędnych wzdłuż kolejnych osi odpowiadają miarom rzutów wektora na odnośną oś. A p = [ p x p y p z ] Na rysunku przedstawiono układ współrzędnych {A}. który tworzą trzy wzajemnie prostopadłe wektory jednostkowe (wersory), o ustalonych kierunkach. Punkt odpowiadający pozycji w przestrzeni, określa się za pomocą wektora lub prościej za pomocą uporządkowanej trójki liczb. 1
2 Poszczególne składowe wektora oznacza się odpowiednio indeksem x, y lub z, umieszczonym poniżej oznaczenia punktu (pozycji). Położenie punktu w przestrzeni będziemy opisywać za pomocą wektora pozycji. Możliwy jest inny opis położeń punktów w przestrzeni trójwymiarowej, np. w układzie współrzędnych sferycznych lub cylindrycznych. Opis orientacji Często występuje konieczność nie tylko określenia pozycji punktu w przestrzeni, lecz również opisania orientacji ciała w przestrzeni. Na przykład, mimo że wektor Ap na rysunku wskazuje położenie punktu równo odległego od końcówek chwytaka manipulatora, to usytuowanie chwytaka pozostanie nadal nieokreślone, dopóki nie ustali się jego orientacji. Przyjmując, że manipulator ma wystarczającą liczbę połączeń ruchowych (jaka jest liczba wymagana dowiemy się kiedy indziej), chwytak mógłby być zorientowany dowolnie przy zachowaniu stałej pozycji w przestrzeni punktu leżącego między końcówkami chwytaka. W celu opisania orientacji ciała zwiążemy z nim układ współrzędnych, a następnie opiszemy położenie tego układu współrzędnych względem układu odniesienia. Na rysunku z ciałem związano układ współrzędnych {B}. Opis położenia układu {B} względem {A} jest wystarczający do określenia orientacji ciała. Zatem, pozycje punktów są, opisane przez wektory, a orientacje ciał przez związane z nimi układy współrzędnych. Jeden ze sposobów opisania układu {B}, związanego z ciałem, polega na zapisie wersorów jego trzech osi głównych 1 w układzie {A}. (2.2) Wersory opisujemy stosując oznaczenia głównych kierunków układu współrzędnych {B} w postaci. Jeżeli zostaną one opisane w układzie współrzędnych {A}, wtedy zapis przyjmie postać. Wygodne jest równoczesne operowanie na trzech wersorach zestawionych 1 Często jest wygodne operowanie trzema wersorami, mimo że wystarczyłoby operowanie dowolną parą wersorów, ponieważ trzeci można zawsze uzyskać z iloczynu wektorowego dwóch danych. 2
3 w kolumnach macierzy 3x3 w kolejności:. Takie zestawienie będziemy nazywać macierzą obrotu, a ponieważ ta szczególna macierz obrotu opisuje orientację układu {B} względem {A}, będziemy ją zapisywać w postaci A BR. (Wybór dolnych i górnych indeksów w zapisie macierzy obrotu zostanie wyjaśniony kiedy indziej.) Podsumowując, orientację opisujemy za pomocą zbioru trzech wektorów. Dla wygody, będziemy tworzyć macierz 3x3, której kolumny będą odpowiadały tym trzem wektorom. Zatem, jeżeli położenie punktu jest określone za pomocą wektora, to orientację ciała opisujemy za pomocą macierzy. (Później omówimy inne sposoby zapisu orientacji, wymagające podania tylko trzech parametrów.) Każdy ze skalarów r ij w macierzy możemy zastąpić wyrażeniem, jeśli zauważymy, że składowe każdego wektora odpowiadają rzutom tego wektora na kierunki osi jego układu odniesienia. A zatem, każdy składnik macierzy obrotu w tej macierzy (2.2) może być zapisany w postaci iloczynu skalarnego pary wersorów (2.3) Dla zwięzłości pominęliśmy poprzedzające indeksy górne w prawej skrajnej macierzy w równaniu (2.3). W rzeczywistości wybór układu, w którym opisywane są wersory, może być dowolny, jednak pod warunkiem, że będzie on taki sam dla każdej pary wektorów mnożonych skalarnie. Ze względu na to, że iloczyn skalarny dwóch wersorów jest równy kosinusowi kąta między nimi, to elementy macierzy obrotu nazywane są często kosinusami kierunkowymi. Z głębszej analizy (2.3) wynika, że wiersze macierzy A BR są wersorami układu {A} wyrażonymi w układzie {B}; a zatem (2.4) Stąd macierz opisująca orientację układu (A) względem (B), otrzymuje się w wyniku transponowania (2.3), to znaczy (2.5) Można stąd wnioskować, że odwrotna macierz obrotu jest równa jej macierzy transponowanej, co można łatwo sprawdzić jak poniżej (2.6) gdzie T 3 oznacza macierz jednostkową 3x3. Zatem (2.7) 3
4 Z algebry liniowej [1] wiemy, że odwrócenie macierzy z kolumnami ortonormalnymi jest równoważne z jej transponowaniem. Powyżej wykazaliśmy to na drodze geometrycznej Opis lokalnego układu współrzędnych W celu jednoznacznego określenia położenia chwytaka manipulatora, jak np. na rys. 2.2, trzeba dysponować informacją o jego pozycji i orientacji. Punkt ciała, którego pozycję będziemy opisywać, może być wybrany dowolnie, jednak dla ułatwienia, wybrano punkt w początku lokalnego układu współrzędnych, związanego z ciałem. Równoczesny opis pozycji I orientacji występuje w robotyce bardzo często, dlatego też zdefiniujemy pojęcie bloku, będącego zbiorem czterech wektorów, zapisanych w postaci macierzy położenia, informującej o pozycji I orientacji układu. Na przykład na rys. 2.2 jeden wektor określa pozycję skrajnego punktu na osi symetrii końcówek chwytaka, a trzy pozostałe opisują jego orientację. Równoważnie, opis układu może być utożsamiany z wektorem pozycji i macierzą obrotu. Zauważmy, że macierz położenia opisuje lokalny układ współrzędnych, przy czym obok orientacji układu należy podać wektor pozycji, określający pozycję początku tego układu współrzędnych względem pewnego innego zewnętrznego układu współrzędnych. Na przykład lokalny układ współrzędnych {B} jest opisany przez macierz obrotu oraz wektor, określający pozycję początku układu (B) 4 (2.3) (2.8 Na rysunku (2.3) przedstawiono trzy lokalne układy współrzędnych wraz z globalnym układem współrzędnych. Położenia układów {A} i {B} są określone względem globalnego układu współrzędnych, natomiast położenie układu {C} określono względem układu {A}. Na tym rysunku (2.3) pokazano graficzną reprezentację układów, którą będziemy posługiwać się przy ich wizualizacji. Układ reprezentują trzy strzałki, będące wersorami, określającymi główne osie lokalnego układu współrzędnych. Pogrubiona strzałka, łączącą początki układów współrzędnych, oznaczono wektor określający pozycję punktu początku układu współrzędnych, wskazanego strzałką, względem układu, z którego wyprowadzono strzałkę. Zwrot tej strzałki informuje nas, jak np. na rys. 2.3, że położenie układu {C} jest określone względem {A}, a nie odwrotnie. Reasumując, macierz położenia można stosować do opisu Jednego układu współrzędnych względem drugiego. W tej macierzy zawarte są informacje zarówno o pozycji, jak i orientacji, dlatego będziemy
5 się nią posługiwać W przypadku równoczesnego operowania tymi dwoma pojęciami. Pozycję można opisać za pomocą macierzy położenia, której część dotycząca obrotu Jest macierzą jednostkowa, a część będąca wektorem pozycji lokalizuje opisywany punkt. Podobnie orientację można przedstawić za pomocą macierzy, której ostatnia kolumna, będąca wektorem położenia, byłaby wektorem zerowym. W większości zadań robotyki zachodzi potrzeba wyrażania tej samej wielkości w różnych układach współrzędnych odniesienia. Poprzednio pokazaliśmy, jak opisuje się pozycję, orientację oraz macierz położenia, obecnie rozpatrzymy podstawy matematyczne odwzorowań, dzięki którym poznamy, jak opis zmienia się przy przechodzeniu z jednego układu współrzędnych do drugiego. Odwzorowania przesunięć układów współrzędnych Na rys. 2.4 wybraną pozycję określa wektor Bp. Nasze zadanie polega na opisaniu pozycji tego punktu w przestrzeni w układzie (A), przy czym (A) ma tę samą orientację co i (B). W tym przypadku układ (B) jest tylko przesunięty względem (A). Przesunięcie to jest dane wektorem pozycję punktu początku układu (B) względem (A)., określającym Ze względu na to, że oba wektory są określone względem układów o tej samej orientacji, wektor Ap pozycji punktu P względem (A) wyznacza suma wektorów (2.9) Zauważmy, że tylko w szczególnych przypadkach równoważnych orientacji możemy dodawać wektory, określone względem różnych układów. (2.4) Na tym prostym przykładzie zilustrowano odwzorowanie w jednym układzie wektora opisanego w innym układzie. Odwzorowania lub zmiany opisu przy przejściu z jednego układu do drugiego są szczególnie ważne. Wielkość jako taka (w naszym przypadku punkt w przestrzeni) nie zmieniała się, natomiast zmieniał się jej opis. Zilustrowano to na rys.2.4 gdzie punkt opisany wektorem Bp nie został przesunięty, lecz pozostał w tym samym miejscu, natomiast znaleźliśmy nowy opis tego samego punktu, tym razem względem układu (A). Wektor określa to odwzorowanie, ponieważ wszystkie informacje, niezbędne do wykonania zmiany opisu, są zawarte w tym wektorze (dotyczy to oczywiście przypadku identycznych orientacji układów). 5
6 Odwzorowanie obrotów układów współrzędnych Wcześniej wprowadzono opis orientacji za pomocą trzech wersorów, wyznaczających główne osie układu współrzędnych związanego z ciałem. Dla ułatwienia grupujemy te trzy wersory i przedstawiamy w postaci kolumn macierzy 3x3. Macierz tę będziemy nazywać macierzą obrotu i Jeśli ta szczególna macierz obrotu będzie opisywać układ (B) względem układu (A), to zapiszemy ją w postaci. Zauważmy, że zgodnie z naszą definicją, wszystkie kolumny macierzy obrotu mają wartość jednostkową, a ponadto wersory te są ortogonalne 2. W związku z tym, co wykazaliśmy wcześniej, będzie (2.10) Zatem kolumny macierzy są wersorami układu {B} opisanymi w układzie (A), a wiersze są wersorami {A} opisanymi w (B). Stąd macierz obrotu może być interpretowana jako zbiór trzech wektorów kolumnowych lub jako zbiór trzech wektorów wierszowych, jak poniżej (2.11) Sytuację, jak na rys. 2.5, możemy scharakteryzować następująco: znany jest opis wektora względem pewnego układu (B), natomiast chcielibyśmy poznać jego opis względem innego układu {A}, przy czym początki obu układów pokrywają się. Rachunek taki, jest możliwy, o ile znany jest opis orientacji układu (B) względem (A). Orientację określa macierz obrotu układu (B) opisanymi w układzie (A)., której kolumny są wersorami W celu znalezienia Ap zauważmy, że składowe każdego wektora odpowiadają wprost rzutom tego wektora na osie jego układu współrzędnych. Składowe te znajdujemy z iloczynu skalarnego. Widzimy zatem, że składowe wektora Ap można obliczyć z następujących zależności (2.12). Zauważmy, że zgodnie z (2.11), kolejnym wierszom odpowiadają i. (2.12) Zatem (2. 12) możemy przedstawić w zwartej postaci z macierzą obrotu (2.13). 2 Prostopadłość wektorów w przestrzeni trójwymiarowej 6
7 Równanie (2.13) odpowiada odwzorowaniu, tzn. zmienia opis wektora z postaci Bp tzn. opisu punktu w przestrzeni względem układu (B), na postać Ap, tzn. opis tego samego punktu względem układu {A}. Widzimy teraz, że nasz zapis ułatwi nam śledzenie zamian odwzorowań i układów odniesienia. Wprowadzony przez nas zapis można łatwo sprawdzić pod względem poprawności; należy tylko wyobrazić sobie, że dolny indeks poprzedzający kasuje I zastępuje górny indeks poprzedzający następną wielkość, np. indeksy B w zależności (2.13). Przykład Na rys. 2.6 pokazano układ (B), który został obrócony o pi/6 wokół osi układu (A). Oś jest prostopadła do płaszczyzny kartki i skierowana w naszą stronę. Jeśli wersory układu (B) opiszemy względem układu (A), to po zgrupowaniu przedstawimy je jako kolumny macierzy obrotu otrzymując (2.14) Dany jest wektor (2.15) Macierz odpowiada tutaj odwzorowaniu, które zastosowano w celu przekształcenia Bp tzn. wektora pozycji opisanego względem układu (B), w Ap, tzn. ten sam wektor opisany względem układu {A}. Tak samo jak w przypadku przesunięć, należy pamiętać, że odwzorowany wektor P nie zmienia swego położenia w przestrzeni. Ściśle mówiąc, znajdujemy nowy opis wektora względem innego układu. 7
8 Zadanie R4 Poniżej przedstawiono przykład (działający) wyświetlania animacji robota PUMA (Programmable Universal Machine for Assembly). Zadanie polega na: a) skorygowaniu zakresów ruchu poszczególnych członów robota (wektor qs) b) uzyskaniu przebiegów prędkości i przyspieszeń chwytaka robota (wykorzystać funkcje omówione na wykładzie) exec('startup_rtsx.sce',-1); exec('./models/mdl_puma560.sce',-1) J0 = jacob0(p560,q_n) q0 = [ ]; T=FKine(p560,q0) // uzupełnić t = [0:0.01:1]'; // "time" data qs = [2*pi*t 2*pi*t 2*pi*t 2*pi*t 2*pi*t 2*pi*t]; qs = [pi*t pi*t pi*t pi*t pi*t pi*t]; AnimateRobot(p560,qs); Odpowiedzieć: Jakie są zastosowania Jakobianów. 8
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowomacierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowoRachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoUkłady współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Bardziej szczegółowoRozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Bardziej szczegółowoWektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowoi = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Bardziej szczegółowoWykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Bardziej szczegółowoGeometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoAnaliza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
Bardziej szczegółowoWektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Bardziej szczegółowoMECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład II
Wykład II I. Algebra wektorów 2.1 Iloczyn wektorowy pary wektorów. 2.1.1 Orientacja przestrzeni Załóżmy, że trójka wektorów a, b i c jest niekomplanarna. Wynika z tego, że żaden z tych wektorów nie jest
Bardziej szczegółowoFunkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Bardziej szczegółowoMechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Bardziej szczegółowo1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoGeometria. Hiperbola
Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.
Bardziej szczegółowoRÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Bardziej szczegółowoMECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowo1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
Bardziej szczegółowoPrzekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej
Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie
Bardziej szczegółowoAby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
Bardziej szczegółowoA,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Bardziej szczegółowoAlgebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Bardziej szczegółowoElementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowoKrystalochemia białek 2016/2017
Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowo15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoPrzekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Bardziej szczegółowoWYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11
WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim
Bardziej szczegółowo2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowoIloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Bardziej szczegółowoMechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
Bardziej szczegółowoMATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Bardziej szczegółowoZ ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne
46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowoEgzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same
Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2
Bardziej szczegółowoZasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Bardziej szczegółowo= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowoMobilne Aplikacje Multimedialne
Mobilne Aplikacje Multimedialne Rozszerzona rzeczywistość (AR, Augmented Reality) w Systemie Android Cz.1 Krzysztof Bruniecki Podstawy Algebra liniowa, operacje na wektorach, macierzach, iloczyn skalarny
Bardziej szczegółowo0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Bardziej szczegółowo[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Bardziej szczegółowoRobert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań
... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności
Bardziej szczegółowoElementy grafiki komputerowej. Elementy geometrii afinicznej
Elementy grafiki komputerowej. Elementy geometrii j Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 28 Elementy geometrii j Najnowsza wersja
Bardziej szczegółowo9. Podstawowe narzędzia matematyczne analiz przestrzennych
Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu
Bardziej szczegółowoPodstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym
Bardziej szczegółowoZadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Bardziej szczegółowoMODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji
Bardziej szczegółowoWektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Bardziej szczegółowo1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Bardziej szczegółowoR n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
Bardziej szczegółowoIloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
Bardziej szczegółowo1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowoSkrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
Bardziej szczegółowoPrzestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
Bardziej szczegółowoIloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
Bardziej szczegółowoManipulatory i roboty mobilne AR S1 semestr 5
Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych
Bardziej szczegółowoAlgebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Bardziej szczegółowoSTAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Bardziej szczegółowoRozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Bardziej szczegółowoPrzestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Bardziej szczegółowoZad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Bardziej szczegółowodomykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Bardziej szczegółowoJakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są
Bardziej szczegółowoWstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoWykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25
Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n
Bardziej szczegółowoĆwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Bardziej szczegółowoGrafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Bardziej szczegółowoMatematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
Bardziej szczegółowoMECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Bardziej szczegółowoMechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Bardziej szczegółowo