P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
|
|
- Adam Nowacki
- 8 lat temu
- Przeglądów:
Transkrypt
1 TEORI TNU NPRĘŻENI. WEKTOR NPRĘŻENI x P P P P, P - wektoy sł wewnętznych w unktach owezchn wokół unktu P = P, P - suma sł wewnętznych na owezchn P = P = P = śedna gęstość sł wewnętznych na owezchn P P naężene w unkce : = lm = (, ) 0 funkca wektoowa. TN NPRĘŻENI W PUNKCIE zbó wektoów naężena w ustalonym unkce zy dowolne łaszczyźne zekou = const = ( ) wybeamy 3 szczególne łaszczyzny zekou - ostoadłe do os układu wsółzędnych x = wekto naężena zynależny łaszczyźne ostoadłe do os x wesoy nomalne łaszczyzn ostoadłych do os x macez naężena T = ( ) =,, 3 =,, 3 = xx x3,, =,, 3 funkca skalana 3 skalaów KONWENCJ ZNKOWNI NPRĘŻEŃ,, 33 - naężena nomalne, ozostałe to na. styczne G 33 F naęż. nomalne est dodatne, eżel est zgodne skeowane z nomalną zewnętzną łaszczyzny x C D B E na. styczne est dodatne, eżel: ) nomalna zewnętzna łaszczyzny est zgodne skeowana z osą układu, do któe est ona ównoległa ) naężene styczne est zgodne skeowane z osą układu, do któe est ono ównoległe lub gdy oba waunk są ednocześne nesełnone. 4. PŁKI TN NPRĘŻENI
2 TEORI TNU NPRĘŻENI stan naężena, dla któego wszystke składowe leżą w edne łaszczyźne, n. (, x ). x tenso naężena 0 T = = Wekto naężena w dowolne łaszczyźne Wyznaczyć wsółzędne wektoa naężena w kt. łaszczyzny o wesoze nomalnym znaąc macez naężena w tym unkce. Wycnamy z cała element tókątny (o gubośc=), o olu ścank ukośne oaz olach ścanek ostoadlych do os x odowedno,. x sły dzałaące na ścankach P = (, ) (, ) (, ) (, ) = cos (, x ) = = (, x ) = sn = cos sła dzałaąca na ścance P = waunek ównowag sł (zamknęty zestzenny welobok sł) P = P + P F = + = + = + = = + + cos = symeta macezy naężeń = (wynka ona ze sawdzena, że suma układu sł owezchnowych masowych dzałaących na cało est ówna zeo) = = wsółzędne wektoa naężena na ścance o nomalne (konwenca sumacyna) = + + = Macez naężena ozwala wyznaczyć wekto naężena odowadaący dowolne łaszczyźne nese zatem ełną nfomacę o stane naężena w unkce. 4.. Tansfomaca składowych macezy naężena
3 TEORI TNU NPRĘŻENI 3 Jaką ostać maą składowe macezy naężena T okeślone w ukł. wsółzędnych (, x ) w nowym układze (, x ) obóconym o kąt względem ukł. ewotnego x x T = T Wycnamy z cała element tókatny, któego ścany są ównoległe do os układu ewotnego, a ścanka ukośna est ostoadła do ewsze os układu nowego. oszukuemy zatem zwązku naężeń z naężenam,. awdzamy ównowagę sł: x x x P ' = 0 = sn + cos + sn + cos F = sn + cos + cos sn + sn cos = cos + sn + sn P ' = 0 = cos sn + cos sn F = sn cos cos sn + cos sn [( ) sn cos ] = cos Dokonuąc analogcznego zekou, ale łaszczyzną ukośną, ostoadłą do duge os układu nowego otzymamy naężena Ostateczne wzoy tansfomacyne dla macezy naężeń zy oboce układu wsółzędnych o kąt maa ostać: x x x = cos + sn + sn = sn + cos sn [( ) sn + cos ] = ± cos 4.3. Naężena główne Poszukuemy take łaszczyzny zechodzące zez dany unkt, aby odowadaący e wekto naężena mał tak sam keunek ak weso nomalny łaszczyzny. x ( ; ) ( ; ) = = - maa wektoa Zauważmy, że utożsamaąc keunek wesoa nomalnego łaszczyzny z keunkem n. "" os nowego układu, wekto naężena twozący ewszy wesz 'nowego" tensoa naężena
4 TEORI TNU NPRĘŻENI 4 małby nezeową tylko ewszą składową - składową nomalną. Byłaby ona nawększa sośód wszystkch możlwych. Take naężene nomalne nos nazwę naężena głównego, a odowadaąca mu łaszczyzna to łaszczyzna główna. waunek kolneanośc = = wekto naężena = T = zagadnene własne T = = δ = 0 + = (wa. ednostkowe dług. wesoa) Waunek koneczny stnena ozwązana ze wzg. na elementy macezy ześca det δ = 0 = 0 I + I = (ówn. chaakteystyczne) 0 I = +, I = każde z watośc głównych odowada łaszczyzna główna, okeślona wesoem nomalnym,, wesoy okeślaące łaszczyzny główne są otonomalne, tzn., = + ( ) o = 0 dla dla ± + 4 tg =, =, seudołask stan naężena - ak wyże, ale Rezultaty ak dla PN, a tzece naężene główne 3 = Ekstemalne naężena styczne Poblem : W unkce znany est tenso naężena w osach głównych. Jaką łaszczyzną należy zekoć cało w kt., aby maa zutu wektoa naężena odowadaącego te łaszczyźne na ną samą była maksymalna? τ ; wekto naężena = ; weso nomalny = - maa zutu wektoa naężena na nomalną τ - maa zutu wektoa naężena na łaszczyznę = = + o = = = Pocedua ozwązana = + ()
5 TEORI TNU NPRĘŻENI 5 = + τ τ = ( ) τ = + + () + waunek + = (3) Zadane sowadza sę do znalezena ekstemum funkc () z waunkem obocznym (3) ) z wa. (3) wyelmnować ) waunek koneczny stnena ekstemum wstawć do funkc () ( ) [( ) ] τ = + + τ ( ; ) ± ± τ ( ± ; ± ) = ± = 0 + elementane oblczena Rozwązane : Naężena styczne osągaą swoe ekstema na łaszczyznach nachylonych od kątam 45 do łaszczyzn głównych. 5. RÓWNNI RÓWNOWGI (RÓWNNI NIER) fomułowane zagadnena: Dowolne cało obcążone ukł. sł zewnętznych (Z) 0 ozostae w ównowadze. Z wnętza cała wycnamy element o obętośc o owezchn o. Okeślć waunk ównowag wycętego elementu. x 0 0 X = 3 X = (X, X, X 3 ) - wekto sł masowych w dowolnym unkce wewnątz obętośc 0 ; ; - wekto naężena w dowolnym unkce na owezchn 0 o nomalne ; ; ( ) = 3 tw. o ównoważnośc układu sł zewnętznych wewnętznych ukł. sł dzałaących na wycęty element est układem zeowym = d + Xd = 0 M = d + Xd = 0 waunek ównowag sł = d + X d = 0 = d + X d = 0
6 TEORI TNU NPRĘŻENI 6 0 d 0 = 0 cos tw. Geena-Gaussa-Ostogadskego, x d0 = d0, (, ) 0 x = d + X d = + X d = Równana ównowag - ównana Navea, + X = X =,, 3, X =,, 3, X = 3, 3, 33, waunek ównowag momentów owadz do symet macezy naężena = WNIOKI ) Macez naężena zawea 6 neznanych składowych, któych ne można wyznaczyć kozystaąc tylko z ównań Navea, któych est edyne 3. ) Równana Navea są ównanam óżnczkowym, zy ch całkowanu oawą sę zatem stałe całkowana. Wyznacza sę e na odstawe analzy elementu cała zaweaącego część ego owezchn zewnętzne. Dzęk temu możlwe est owązane naężeń w unktach na owezchn z obcążenem zewnętznym. Relace wążące naężena z obcążenem zewnętznym cała noszą nazwę statycznych waunków bzegowych. 6. TTYCZNE WRUNKI BRZEGOWE W celu owązana naężeń z obcążenem zewnętznym wycnamy z cała element obętoścowy w kształce czwooścanu, któego 3 ścank są ównoległe do łaszczyzn układu wsółzędnych, a ścanka ukośna aoksymue część owezchn zewnętzne cała. x D B D q B C x 3 q - uśednona gęstość obcążena zewnętznego na ścance F o zewnętznym wesoze nomalnym (,, ) = 3 q q q q (,, ) = 3
7 TEORI TNU NPRĘŻENI 7 - uśednone wektoy naężena na ścankach F (,, 3 ) = waunek ównowag sł dzałaących na czwooścan = 0 Zauważmy, że oszukwane zwązku wektoa q z wektoam naężena est fomalne dentyczne z zadanem wyznaczana wektoa naężena na ścance F ako funkc wektoów naężena na ścankach F (czyl składowym tensoa naężena). Mamy zatem: q = q = q = q 3 = WRUNKI KONIECZNE tego, aby dowolna macez symetyczna II zędu był macezą naężena : ) składowe macezy muszą sełnać ównana Navea, ) składowe macezy muszą sełnać statyczne waunk bzegowe.
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Bardziej szczegółowo= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Bardziej szczegółowoZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Bardziej szczegółowoKURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe
Bardziej szczegółowoRysunek 9-13 jest to pokazane na rysunku 9-14.W rezultacie, jeŝeli obroty odbywają się w r
Wykład z zyk, Pot Posmykewcz 9-5 96 Własnośc wektoowe obotów. Aby zaznaczyć keunek obotów względem ustalonej os moŝna wpowadzć plus lub mnus pzed oznaczenem pędkośc kątowej, analogczne jak to mało mejsce
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Bardziej szczegółowoPrzykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Bardziej szczegółowoKartografia matematyczna
Wykład II Katogafia matematyczna Odwzoowania azymutalne Kystian Kozioł Kaków 0 0 9 Klasyfikacja odwzoowań Ze względu na chaakte zniekształceń odwzoowawczych: ównokątne zachowują bez zniekształceń kąty,
Bardziej szczegółowoXLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Bardziej szczegółowo- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Bardziej szczegółowoWykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowoELEMENTY MECHANIKI ANALITYCZNEJ
ELEMENTY MECHANIKI ANALITYCZNEJ Roatuem układ o welu tonach wobod, n. układ łożon unktów matealnch. Na układ mogą bć nałożone wę. P unkt matealn o mae m Układ wobodn kładaąc ę unktów matealnch Wółędne
Bardziej szczegółowoMECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Bardziej szczegółowoKONSTRUOWANIE ENERGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULARNEGO
KONSTUOWANIE ENEGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULANEGO Dwa etay: "ozsądny model eneg otencalne dobó oczątowych watośc aametów Doasowane aametów w tace symulac Oddzaływana ótozasęgowe enega otencalna
Bardziej szczegółowoEnergia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Bardziej szczegółowoPrzykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Bardziej szczegółowoFizyka, technologia oraz modelowanie wzrostu kryształów
Fzyka, technologa oaz modelowane wzostu kyształów Stansław Kukowsk Mchał Leszczyńsk Instytut Wysokch Cśneń PAN 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@unpess.waw.pl, mke@unpess.waw.pl
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.
Bardziej szczegółowoGENERACJA REALISTYCZNYCH METODA ENERGETYCZNA
WYKŁAD GENERACJA REALISTYCZNYCH OBRAZÓW W SCEN 3-D, 3 METODA ENERGETYCZNA Plan wykładu: Welkośc fzyczne osuące śwatło Założena, dea metody enegetyczne Wsółczynnk szęż ężena otycznego - oblczane Algoytmy
Bardziej szczegółowoWykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
Bardziej szczegółowoKryteria samorzutności procesów fizyko-chemicznych
Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
Bardziej szczegółowoPęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Bardziej szczegółowoObroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.
Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca
Bardziej szczegółowoSK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,
Bardziej szczegółowoWykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
Bardziej szczegółowoLaboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
Bardziej szczegółowoMechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)
Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy
Bardziej szczegółowo3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa
3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne
Bardziej szczegółowoMECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Bardziej szczegółowoRUCH OBROTOWY BRYŁY SZTYWNEJ
RUCH OBROTOWY BRYŁY SZTYWNE RUCH OBROTOWY BRYŁY SZTYWNE Cało Doskonale Sztywne (Była Sztywna) model cała zeczywstego układ n oddzaływujących cząstek któych wzajemne odległośc ne ulegają zmane Cało wykonuje
Bardziej szczegółowoRównania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
Bardziej szczegółowo8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Bardziej szczegółowoι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Bardziej szczegółowoRuch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Bardziej szczegółowoMIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene
Bardziej szczegółowoStudia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
Bardziej szczegółowoWYKŁAD 15 ELEMENTY TEORII PRZEPŁYWÓW TURBULENTNYCH
WYKŁAD 15 ELEMENTY TEORII PRZEPŁYWÓW TURBULENTNYCH Genealna zasada: kiedy liczba Reynoldsa dla pewnego pzepływu laminanego ośnie, pzepływ stae się coaz badzie skomplikowany. Powyże pewne watości liczby
Bardziej szczegółowoI. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Bardziej szczegółowo16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski
6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję
Bardziej szczegółowocz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Bardziej szczegółowoWykład 4 Wiązania wewnątrzcząsteczkowe mechanika kwantowa, atom wodoru, atomy wieloelektronowe, cząsteczka
Wykład Wązana wewnątzcząsteczkowe mechanka kwantowa, atom wodou, atomy weloelektonowe, cząsteczka W. Atom wodou w ujęcu mechank kwantowej Funkcja amltona zedstawająca całkowtą enegę elektonu w atome wodou:
Bardziej szczegółowor śm równa się wypadkowej sile działającej na
Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak
Bardziej szczegółowoFizyka 7. Janusz Andrzejewski
Fzyka 7 Janusz Andzejewsk Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
Bardziej szczegółowo11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Bardziej szczegółowo9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I
9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 9. Spawdzene dugej zasady dynamk uchu obotowego Wpowadzene Pzez byłę sztywną ozumemy cało, któe pod wpływem dzałana sł ne zmena swego kształtu,
Bardziej szczegółowoBRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Bardziej szczegółowoWykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Bardziej szczegółowoSiła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
Bardziej szczegółowou u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
Bardziej szczegółowoPRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM
PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,
Bardziej szczegółowoMechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
Bardziej szczegółowoGEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Bardziej szczegółowoIndukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych
ndukcja eektomagnetyczna ndukcyjność Dgana w obwodach eektycznych Pawo ndukcj eektomagnetycznej Faadaya > d zewnętzne poe magnetyczne skeowane za płaszczyznę ysunku o watośc osnącej w funkcj czasu. ds
Bardziej szczegółowoMagnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Bardziej szczegółowoZadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listoad 05 Zadania zamknięte Za każdą oawną odowiedź zdający otzymuje unkt. Nume Poawna odowiedź Wskazówki do ozwiązania.
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Bardziej szczegółowoOBLICZENIA NUMERYCZNE TENSORA PRZEPUSZCZALNOŚCI DARCY EGO W OPARCIU O METODĘ ASYMPTOTYCZNEJ HOMOGENIZACJI
Gónictwo i Geoinżynieia Rok 3 Zeszyt 008 Tomasz Stzelecki* OBLICZENIA NUMERYCZNE TENSORA PRZEPUSZCZALNOŚCI DARCY EGO W OPARCIU O METODĘ ASYMPTOTYCZNEJ HOMOGENIZACJI 1. Wpowadzenie Załóżmy, że ośodek poowaty
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Bardziej szczegółowo29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste
9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea
Bardziej szczegółowoFizyka, technologia oraz modelowanie wzrostu kryształów
Fzyka, technologa oaz modelowane wzostu kyształów Stansław Kukowsk Mchał Leszczyńsk Instytut Wysokch Cśneń PAN 01-14 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@unpess.waw.pl, mke@unpess.waw.pl
Bardziej szczegółowoWYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
Bardziej szczegółowoZasada Jourdina i zasada Gaussa
Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane
Bardziej szczegółowoWYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.
WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,
Bardziej szczegółowoWykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
Bardziej szczegółowoOpracowanie pytań na egzamin Fizyka dla elektroników 1
Opacowane pytań na egzamn Fzyka dla elektonków 1 Powadzący: d hab nż. Gzegoz Haań (wesja okojona, po konsultacjach 1 Inecjalne nenecjalne układy odnesena 1.1 *** Inecjalny układ odnesena jego zwązek z
Bardziej szczegółowoĆWICZENIE 5. Badanie przekaźnikowych układów sterowania
ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych
Bardziej szczegółowo1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoUkłady punktów materialnych i zasada zachowania pędu.
Wykład z fzyk. Pot Posmykewcz 68 W Y K Ł A D VII Układy punktów matealnych zasada zachowana pędu. Do tej poy taktowaly cała take jak samochód, aketę, czy człoweka jako punkty matealne (cząstk) stosowaly
Bardziej szczegółowoPrzykład 3.2. Rama wolnopodparta
rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ
Bardziej szczegółowoZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
Bardziej szczegółowo5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
Bardziej szczegółowoBudownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8
Bdownctwo, II rok sem IV MEODY OBLICZEIOWE dr nŝ. Potr Srokosz IP- emat 8 emat 8 Równana róŝnczkowe cząstkowe Metoda Elementów Skończonch (MES) Zagadnene brzegowe Sformłowane zagadnena fzcznego Równana
Bardziej szczegółowo24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
Bardziej szczegółowoJądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu
Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy
Bardziej szczegółowoPróba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki
Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie
Bardziej szczegółowoĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI
ĆWICZEIE 6 POMIAR MOMETU BEZWŁADOŚCI. SPRAWDZEIE DRUGIEJ ZASADY DYAMIKI DLA RUCHU OBROTOWEGO. BADAIE ADDYTYWOŚCI MOMETU BEZWłADOŚCI Wpowadzenie Była sztywna to układ punktów mateialnych o stałych odległościach
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone
Bardziej szczegółowo(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Bardziej szczegółowo= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
Bardziej szczegółowoL(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Bardziej szczegółowoZarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
Bardziej szczegółowobrak podstaw do odrzucenia hipotezy zerowej.
Paca domowa 9. W pewnym bowaze zanstalowano dwa automaty do napełnana butelek. Ilość pwa nalewana pzez pewszy est zmenną losową o ozkładze N( m,, a lość pwa dozowana pzez dug automat est zmenną losową
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoPrzedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. Wykład 5, 2011/2012. Wydział EAIiE Kierunek: Elektrotechnika
PRACA I ENERGIA 1 ENERGIA A PRACA Enegia jest to wielkość skalana, chaakteyzująca stan, w jakim znajduje się jedno lub wiele ciał. Enegia kinetyczna jest związana ze stanem uchu ciała. Paca jest to enegia
Bardziej szczegółowoDODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
Bardziej szczegółowoPrzedmiot: Fizyka PRACA I ENERGIA. Wykład 7, 2015/2016 1
PRACA I ENERGIA Wykład 7, 015/016 1 ENERGIA A PRACA Enegia jest to wielkość skalana, chaakteyzująca stan, w jakim znajduje się jedno lub wiele ciał. Enegia kinetyczna jest związana ze stanem uchu ciała.
Bardziej szczegółowoMateriały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1
Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,
Bardziej szczegółowoElementarne przepływy potencjalne (ciąg dalszy)
J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego
Bardziej szczegółowocz.1 dr inż. Zbigniew Szklarski
ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay
Bardziej szczegółowoPole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Bardziej szczegółowoWarunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowo