MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO
|
|
- Władysław Nowakowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 InŜynieria Rolnicza 11/2006 Małgorzaa Trojanowska Kaedra Energeyki Rolniczej Akademia Rolnicza w Krakowie MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO Sreszczenie W pracy sprawdzano przydaność wybranych modeli wywodzących się z eorii chaosu zdeerminowanego do prognozowania rocznej sprzedaŝy energii elekrycznej na erenach wiejskich. Ze względu na zaburzenia procesu zaporzebowania na energię, prognozy sporządzano na sumach kilkulenich. Uzyskane w en sposób prognozy cechuje duŝa dokładność (średnie absolune błędy 1,2-2,6%), kórą moŝna jeszcze zwiększyć poprzez opracowanie prognozy kombinowanej. Słowa kluczowe: energia elekryczna, prognoza, eoria chaosu zdeerminowanego Wprowadzenie DąŜenie do uzyskania coraz bardziej wiarygodnych prognoz pociąga za sobą rozwój meod predykcji. Począkowo do prognozowania zaporzebowania na energię elekryczną wykorzysywano prose modele eksrapolacyjne, później ekonomeryczne modele przyczynowo-skukowe, a obecnie dominującą klasą modeli prognosycznych są modele echniczno-ekonomiczne end-use, opare na koncepcji bilansowania porzeb energeycznych. PoniewaŜ modele e wymagają szczególnie rozbudowanej bazy danych, prognosycy zmuszeni są coraz częściej do zaniechania ich opracowywania i powrou do mniej wymagających modeli ekonomerycznych, a nawe do modeli oparych wyłącznie na analizie szeregów czasowych. Nie musi o jednak oznaczać powrou do klasycznych meod prognozowania. MoŜna przy opracowywaniu prognoz wykorzysywać nowe narzędzia meodologiczne jak np. modele wywodzące się z eorii chaosu zdeerminowanego. '*,
2 @TÄZbemTgT Geb]Tabjf^T Cel i zakres pracy Celem pracy było sprawdzenie przydaności modeli wywodzących się z eorii chaosu zdeerminowanego, w szczególności modeli oparych na wymiarze frakalnym, modeli logisycznych według Prigogine a, modeli logisycznych według Schusera i modeli krzyŝowania heurysycznego do lokalnego prognozowania zaporzebowania energii elekrycznej na erenach wiejskich. Cel pracy zrealizowano opracowując modele prognosyczne rocznej sprzedaŝy energii elekrycznej odbiorcom wiejskim na erenach Polski południowej. Jako ciąg uczący dla prognoz wybrano szereg czasowy zaporzebowania na energię elekryczną w laach , kóry charakeryzował się zaburzeniami, gdyŝ modelowanie akich przebiegów przy wykorzysaniu meod klasycznych jes obarczone duŝymi błędami. Opis modeli prognosycznych Model opary na wymiarze frakalnym W pracy do prognozowania sprzedaŝy energii elekrycznej, kórą moŝna uznać za samopodobną losową funkcję czasu, wykorzysano model opary na wymiarze frakalnym o posaci [Dobrzańska 2002]: gdzie: ^ i i 1 i= 2 1 (1) 2 + = ^ +1 prognoza sprzedaŝy energii elekrycznej na rok +1, i= 2 i 1 sprzedaŝ energii elekrycznej w roku. Modele logisyczne Model według Prigogine a W oparciu o przyoczone przez Prigogine a [1980] równanie logisyczne rozwoju populacji, model prognosyczny zuŝycia energii elekrycznej moŝna zapisać w posaci: ^ + 1 = + r ( 1 ) (2) K '+#
3 @bw_ cebzabfglvma!!! gdzie: r K współczynnik szybkości wzrosu, pułap rozwoju. Zachowanie się procesu zaleŝy od warości r i sosunku K do w chwili począkowej [Dobrzańska 2002]. W pracy paramery K i r wyznaczano ieracyjnie na podsawie saysyk rocznej sprzedaŝy energii elekrycznej. Model według Schusera Model predykcyjny sprzedaŝy energii elekrycznej w oparciu o odwzorowanie Schusera [1993], wywodzące się z analizy zachowań chaoycznych układu dynamicznego jakim jes okresowo uderzany z pewną siłą roor, przedsawiają równania 3-6 [Dobrzańska 2002]: gdzie: o ^ + 1 ( = α ) (3) o α+ 1 = rα ( 1 α ) (4) 1 α = (5) α + 1 = (6) 1 roczna sprzedaŝ energii elekrycznej z hisorii procesu poprzedzającego momen saru do prognozy, α, α +1, względne przyrosy sprzedaŝy energii elekrycznej, r współczynnik szybkości wzrosu wyznaczany z ciągu uczącego. Model krzyŝowania heurysycznego Model krzyŝowania heurysycznego ma posać analogiczną do odwzorowania według Schusera, z ym Ŝe względny przyros α +1 opisany zaleŝnością 4 zasępuje się operaorem [Dobrzańska 2002]: + 1 = r( α α 1 ) α 0 1 α + r (7) Przy czym w prognozach przyjmuje się dla r > 1 warość współczynnika szybkości wzrosu równą 1 oraz równą 0 dla r < 0, zaś α i definiuje analogicznie jak w modelu logisycznym według Schusera. '+$
4 @TÄZbemTgT Geb]Tabjf^T Wyniki badań Modele prognosyczne są bardzo czułe na dynamikę procesu w przeszłości. W związku z czym isnieje konieczność opracowania wielu prognoz, by moŝna było ocenić czy w saysyce zuŝycia energii elekrycznej czają się zaląŝki hossy lub bessy. JeŜeli przebieg czasowy procesu jes zaburzony zaleca się dodakowo opracowywanie prognoz na sumach kilkulenich, kóre nasępnie wyrównuje się odpowiednim algorymem [Dobrzańska 2002]. W pracy, w oparciu o przedsawione w poprzednim rozdziale równania rekurencyjne 1-7, sporządzano 10-lenie prognozy wygasłe na sumach 3, 4 i 5-lenich, uzyskując w en sposób dwanaście prognoz wsępnych (rys. 1), z kórych nasępnie usunięo e, kóre wykazywały zbynie odchylenia od prognozowanego przebiegu. W ramach oceny jakości prognoz analizowano warości średnie absolunych procenowych błędów [Diman 2003], orzymanych przez porównanie wyników wykonanych procedur prognosycznych z rzeczywisymi realizacjami procesu, jako najczęściej sosowanych mierników dopuszczalności prognoz zaporzebowania na energię elekryczną. Warości ych błędów zesawiono w abeli 1. Tabela 1. Średnie absolune błędy prognoz wygasłych rocznej sprzedaŝy energii elekrycznej w laach Table 1. Average absolue errors of expired forecass for annual elecric energy sale in he years Model F_5 P_5 S_5 H_5 F_4 P_4 S_4 H_4 F_3 P_3 S_3 H_3 Błąd [%] 2,4 1,8 1,2 1,4 2,4 1,6 1,4 1,4 2,3 1,3 2,6 1,2 Analiza przebiegów prognoz wygasłych i ich błędów wykazała najmniejszą przydaność do prognozowania modeli oparych na wymiarze frakalnym oraz modelu logisycznego S_3 według Schusera. Prognozy wykonane w oparciu o e modele usunięo z wiązki prognoz, a z pozosałych uworzono przebieg średni (rys. 2). Orzymaną w en sposób prognozę kombinowaną charakeryzuje bardzo niewielki błąd (0,8%). '+%
5 @bw_ cebzabfglvma!!! GWh Ar F_5 P_5 S_5 H_5 F_4 S_4 H_4 F_3 P_3 S_3 H_3 Rys. 1. Fig. 1. Roczna sprzedaŝ energii elekrycznej w laach oraz prognozy wygasłe rocznej sprzedaŝy w laach , gdzie: Ar sprzedaŝ rzeczywisa, F_5, F_4, F_3 prognozy na podsawie modelu oparego na wymiarze frakalnym na sumach 5, 4, 3- lenich, P_5, P_4, P_3 prognozy na podsawie modelu wg Prigogine a na sumach 5, 4, 3- lenich, S_5, S_4, S_3 prognozy na podsawie modelu wg Schusera na sumach 5, 4, 3- lenich, H_5, H_4, H_3 prognozy na podsawie modelu krzyŝowania heurysycznego na sumach 5, 4, 3- lenich Annual sale of elecric energy in he years and expired forecass of annuals sale in he years , where: Ar acual sales volume, F_5, F_4, F_3 forecass based on model according o fracal dimension on sums 5, 4, 3-year, P_5, P_4, P_3 forecass based on model according o Prigogine on sums 5, 4, 3-year, S_5, S_4, S_3 forecass based on model according o Schuser on sums 5, 4, 3-year, H_5, H_4, H_3 forecass based on heurisic crossing model on sums 5, 4, 3-year '+&
6 @TÄZbemTgT Geb]Tabjf^T GWh Ar P_5 S_5 H_5 P_4 S_4 H_4 P_3 H_3 Śre Rys. 2. Fig. 2. Roczna sprzedaŝ energii elekrycznej w laach oraz prognozy wygasłe rocznej sprzedaŝy w laach , gdzie: Ar sprzedaŝ rzeczywisa, P_5, P_4, P_3 prognozy na podsawie modelu wg Prigogine a na sumach 5, 4, 3- lenich, S_5, S_4 prognozy na podsawie modelu wg Schusera na sumach 5, 4- lenich, H_5, H_4, H_3 prognozy na podsawie modelu krzyŝowania heurysycznego na sumach 5, 4, 3- lenich, Średnia prognoza uśredniona Annual sale of elecric energy in he years and expired forecass of annuals sale in he years , where: Ar acual sales volume, P_5, P_4, P_3 forecass based on model according o Prigogine on sums 5, 4, 3-year, S_5, S_4 forecass based on model according o Schuser on sums 5, 4-year, H_5, H_4, H_3 forecass based on heurisic crossing model on sums 5, 4, 3-year, Mean averaged forecas Dobrym miernikiem zbieŝności danych rzeczywisych i prognozowanych jes akŝe kwadra współczynnika korelacji Pearsona (R 2 ). Odzwierciedla on sopień liniowej zaleŝności pomiędzy dwoma zbiorami danych. Korelację pomiędzy rzeczywisą '+'
7 @bw_ cebzabfglvma!!! sprzedaŝą energii elekrycznej a sprzedaŝą prognozowaną uśrednioną przedsawia rysunek 3, powierdzając duŝą dokładność prognozy kombinowanej y = 0,6849x + 229,15 R 2 = 0,8633 Prognoza sprzedaŝy (y) SprzedaŜ (x) Rys. 3. Fig. 3. Korelacja pomiędzy sprzedaŝą energii elekrycznej a prognozą kombinowaną ej sprzedaŝy Correlaion beween he sale of elecric energy and combined forecased of his sale Podsumowanie Średnie absolune błędy prognoz wygasłych rocznej sprzedaŝy energii elekrycznej odbiorcom wiejskim, wyznaczone w oparciu o modele wywodzące się z eorii chaosu zdeerminowanego na sumach kilkulenich, wahają się od 1,6% do 2,6% i są kilkakronie mniejsze od błędów prognoz wyznaczonych meodami klasycznymi [Trojanowska i Knaga 2005]. Dokładność predykcji moŝna zwiększyć opracowując prognozę kombinowaną jako średnią wiązki prognoz wyznaczonych w oparciu o eorię chaosu zdeerminowanego, po wcześniejszym usunięciu z niej prognoz najbardziej odsających. '+(
8 @TÄZbemTgT Geb]Tabjf^T Bibliografia Diman P Prognozowanie w przedsiębiorswie. Oficyna Ekonomiczna, Kraków. Dobrzańska I. (red.) Prognozowanie w elekroenergeyce. Zagadnienia wybrane. Wyd. Pol. Częsochowskiej, Częsochowa. Prigogine I From being o becoming. Time and complexiy in he fhysical sciences. W.F. Freeman, New York. Schuser H.G Deerminisic chaos. An inroducion. Physik Verlag, Wenheim. Trojanowska M., Knaga J Wykorzysanie wybranych meod prognozowania gospodarczego do predykcji zaporzebowania na energię elekryczną odbiorców wiejskich. InŜynieria Rolnicza 2 (57), PROGNOSTIC MODELS OF ELECTRIC ENERGY SALES TO RURAL CONSUMERS BASED ON FRACTAL DIMENSION, LOGISTIC AND HEURISTIC CROSSING MODELS Summary The work includes verificaion of usefulness of seleced models derived from chaos heory deermined for forecasing annual elecric energy sale in rural areas. Due o disurbances of he energy consumpion process, he forecass were made based on several years' sums. The forecass obained his way are characerized by high accuracy (average absolue errors 1,2-2,6%), which can be increased even more by elaboraing a combined forecas. Key words: elecric energy, forecas, deermined chaos heory '+)
WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH
INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH Nr 2/2005, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 121 128 Komisja Technicznej Infrasrukury Wsi Małgorzaa Trojanowska WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W
Analiza rynku projekt
Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Prognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
licencjat Pytania teoretyczne:
Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie
PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH
WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH
Inżynieria Rolnicza 1(110)/2009 WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Małgorzata Trojanowska Katedra Energetyki
PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO
5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU
PORÓWNANIE PRZYDATNOŚCI WYBRANYCH MODELI ROZMYTYCH DO PREDYKCJI ZAPOTRZEBOWANIA ENERGII ELEKTRYCZNEJ NA TERENACH WIEJSKICH
InŜynieria Rolnicza 7/2005 Małgorzata Trojanowska, Jerzy Małopolski* Zakład Energetyki Rolniczej *Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PORÓWNANIE PRZYDATNOŚCI WYBRANYCH
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE
SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne
WYZNACZANIE OBCIĄŻEŃ SZCZYTOWYCH W WIEJSKICH SIECIACH ELEKTROENERGETYCZNYCH
Problemy Inżynierii Rolniczej nr 2/2007 Małgorzata Trojanowska, Krzysztof Nęcka Katedra Energetyki Rolniczej Akademia Rolnicza w Krakowie WYZNACZANIE OBCIĄŻEŃ SZCZYTOWYCH W WIEJSKICH SIECIACH ELEKTROENERGETYCZNYCH
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 2014, 313(76)3, 137 146 Maria Szmuksa-Zawadzka, Jan Zawadzki MODELE WYRÓWNYWANIA WYKŁADNICZEGO W PROGNOZOWANIU
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza 5(114)/2009 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ I. ALGORYTMY WYZNACZANIA MODELI ROZMYTYCH Jerzy
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Radosław GAD 1 Moniorowanie diagnosyczne, model dynamiczny, diagnosyka pojazdowa ANALIZA BIPOLARNEGO
ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY
B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW
PROGNOZOWANIE BRAKUJĄCYCH DANYCH DLA SZEREGÓW O WYSOKIEJ CZĘSTOTLIWOŚCI OCZYSZCZONYCH Z SEZONOWOŚCI
Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-8611 Nr 289 2016 Maria Szmuksa-Zawadzka Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sudium Maemayki Jan Zawadzki
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Zarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1)
Zarządzanie Projekami Wykład 3 Techniki sieciowe (część ) Przedsięwzięcie wieloczynnościowe Przedsięwzięcie wieloczynnościowe skończona liczba wzajemnie ze sobą powiązanych czynności (eapów). Powiązania
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201
KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO
Problemy Inżynierii Rolniczej nr 3/2007 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie KRÓTKOTERMINOWE PROGNOZOWANIE
WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
ĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Ocena płynności wybranymi metodami szacowania osadu 1
Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH
METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 2009 Barbara GŁADYSZ* METODA OKREŚLANIA WIELKOŚCI KONTRAKTÓW NA ENERGIĘ ELEKTRYCZNĄ W arykule zaproponowano meodę określania wielkości konraków na
Prognozowanie wartości wskaźników poziomu motoryzacji dla wybranych miast w Polsce
URCZYŃKI Jan AMITOWKA Wioleta rognozowanie wartości wskaźników poziomu motoryzacji dla wybranych miast w olsce treszczenie W pracy rozpatrzono przydatność klasycznej metody tendencji rozwojowej do prognozowania
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO
ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział
PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM
PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany
Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania
CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania
Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
WYZNACZANIE SPADKÓW NAPIĘĆ W WIEJSKICH SIECIACH NISKIEGO NAPIĘCIA
Problemy Inżynierii Rolniczej nr 4/2008 Małgorzata Trojanowska, Krzysztof Nęcka Katedra Energetyki Rolniczej Uniwersytet Rolniczy w Krakowie WYZNACZANIE SPADKÓW NAPIĘĆ W WIEJSKICH SIECIACH NISKIEGO NAPIĘCIA
Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD
Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI
Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH
ANALIZA STATYSTYCZNA ZAPOTRZEBOWANIA NA CIEPŁO W GMINACH WIEJSKICH
MOTROL, 2008, 10, 126 130 ANALIZA STATYSTYCZNA ZAPOTRZEBOWANIA NA CIEPŁO W GMINACH WIEJSKICH Małgorzata Trojanowska, Tomasz Szul Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie.
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?
Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Copyright by Politechnika Białostocka, Białystok 2017
Recenzenci: dr hab. Sanisław Łobejko, prof. SGH prof. dr hab. Doroa Wikowska Redakor naukowy: Joanicjusz Nazarko Auorzy: Ewa Chodakowska Kaarzyna Halicka Arkadiusz Jurczuk Joanicjusz Nazarko Redakor wydawnicwa:
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH
dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA
Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzystaniem wybranych metod statystycznych
dr Anna Koz owska-grzybek mgr Marcin Kowalski Kaedra Mikroekonomii Akademia Ekonomiczna w Poznaniu Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzysaniem wybranych
NAPRAWY GWARANCYJNE I POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO POTRANSAKCYJNE ELEMENTY LOGISTYCZNEJ OBSŁUGI KLIENTA
Inżynieria Rolnicza 2(100)/2008 NAPRAWY GWARANCYJNE I POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO POTRANSAKCYJNE ELEMENTY LOGISTYCZNEJ OBSŁUGI KLIENTA Sławomir Juściński Kaedra Energeyki i Pojazdów Uniwersye
WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN
Inżynieria Rolnicza 2(9)/7 WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Akademia
Dendrochronologia Tworzenie chronologii
Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu
Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe
Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy
Stanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK
1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
CHARAKTERYSTYKA GOSPODARSTW ROLNYCH JAKO UśYTKOWNIKÓW ENERGII ELEKTRYCZNEJ
InŜynieria Rolnicza 11/2006 Małgorzata Trojanowska, Jarosław Knaga, Krzysztof Nęcka Katedra Energetyki Rolniczej Akademia Rolnicza w Krakowie CHARAKTERYSTYKA GOSPODARSTW ROLNYCH JAKO UśYTKOWNIKÓW ENERGII
Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.
DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury
Prognoza scenariuszowa poziomu oraz struktury sektorowej i zawodowej popytu na pracę w województwie łódzkim na lata
Projek Kapiał ludzki i społeczny jako czynniki rozwoju regionu łódzkiego współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prognoza scenariuszowa poziomu oraz srukury
MODELE SUBIEKTYWNE W KONSTRUKCJI PROGNOZ DŁUGOOKRESOWYCH
Konsancja Poradowska Uniwersye Ekonomiczny we Wrocławiu MODELE SUBIEKTYWNE W KONSTRUKCJI PROGNOZ DŁUGOOKRESOWYCH Wprowadzenie Dynamiczny rozwój gospodarki, cywilizacji i posępu echnologicznego swarza porzebę
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna
1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
ANALIZA STATYSTYCZNA OBSŁUGI SERWISOWEJ CIĄGNIKÓW ROLNICZYCH W ASPEKCIE ODLEGŁOŚCI OD SIEDZIBY FIRMY
Inżynieria Rolnicza 2(1)/28 ANALIZA STATYSTYCZNA OBSŁUGI SERWISOWEJ CIĄGNIKÓW ROLNICZYCH W ASPEKCIE ODLEGŁOŚCI OD SIEDZIBY FIRMY Sławomir Juściński, Wiesław Piekarski Kaedra Energeyki i Pojazdów, Uniwersye
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej
MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ
Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS
MODELOWANIE INśYNIERSKIE ISSN 1896-771X 37, s. 11-18, Gliwice 2009 WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS ZALEśNOŚCI POZIOMÓW ZANIECZYSZCZEŃ
Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych
InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH
Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t
Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1
Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Podział metod przeszukiwania
Podział meod przeszukiwania Algorymy geneyczne - selekcja Algorymy geneyczne - krzyŝowanie Algorymy geneyczne - muacja Algorymy geneyczne - algorym działania Opymalizacja dla funkcji jednej zmiennej Opymalizacja
Witold Orzeszko Uniwersytet Mikołaja Kopernika w Toruniu. Własności procesów STUR w świetle metod z teorii chaosu 1
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania
Stanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE
Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji
PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW
Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili