Inżynieria Rolnicza 5(114)/2009
|
|
- Władysław Chmiel
- 7 lat temu
- Przeglądów:
Transkrypt
1 Inżynieria Rolnicza 5(114)/2009 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ I. ALGORYTMY WYZNACZANIA MODELI ROZMYTYCH Jerzy Małopolski Instytut Inżynierii Rolniczej i Informatyki, Uniwersytet Rolniczy w Krakowie Małgorzata Trojanowska Katedra Energetyki i Automatyzacji Procesów Rolniczych, Uniwersytet Rolniczy w Krakowie Streszczenie. Opracowano i oprogramowano algorytmy wyznaczania modeli rozmytych, a w szczególności algorytm doboru zmiennych wejściowych do modeli oraz algorytm wyznaczania struktury modeli. Spowodowało to przyśpieszenie procesu budowy modeli prognostycznych opartych na teorii zbiorów rozmytych, dając w ten sposób możność łatwego ich zastosowania do prognozowania zużycia energii elektrycznej na wsi Słowa kluczowe: energia elektryczna, prognozowanie krótkoterminowe, algorytm, model rozmyty Wprowadzenie Realia rynku energii elektrycznej skłaniają spółki odpowiedzialne za zaopatrzenie w energię do poszukiwania coraz bardziej efektywnych metod prognostycznych. Wiedza na temat najbliższej przyszłości pozwala bowiem podejmować trafne decyzje dotyczące bieżącej działalności spółki. Ponieważ klasyczne techniki prognostyczne wyznaczały coraz mniej wiarygodne prognozy, w ostatnich latach zwiększyło się zainteresowanie możliwościami wykorzystania do prognozowania zapotrzebowania na energię elektryczną alternatywnych technik prognostycznych, które są mniej wrażliwe na przypadkowe nieregularności, odbiegające od cech charakterystycznych badanego procesu. Rozwinęła się cała grupa metod znana pod wspólną nazwą metod sztucznej inteligencji. Do grupy tej należą też techniki prognostyczne wykorzystujące teorię zbiorów rozmytych. W literaturze przedmiotu [Popławski 2005a, 2005b; Trojanowska i Małopolski 2007; Małopolski i Trojanowska 2008] można znaleźć przykłady udanych prób jej zastosowania do prognozowania potrzeb elektroenergetycznych. Bazy reguł (wiedzy) modeli rozmytych przedstawiają ważne informacje o modelowanych systemach, których nie można uzyskać przy zastosowaniu sztucznych sieci neuronowych, najczęściej spośród wszystkich metod sztucznej inteligencji wykorzystywanych do prognozowania w elektroenergetyce. 177
2 Jerzy Małopolski, Małgorzata Trojanowska Aplikacja teorii zbiorów rozmytych do prognozowania potrzeb elektroenergetycznych daje możliwość wyboru modelu predykcyjnego spośród wielu modeli o różnych zestawach zmiennych wejściowych i o różnych strukturach. Cel i zakres pracy Celem pracy było opracowanie algorytmów wyznaczania optymalnych modeli rozmytych, które generowałyby krótkoterminowe prognozy zapotrzebowania na energię elektryczną dobrej jakości, a jednocześnie miały możliwie jak najmniejszą liczbę zmiennych wejściowych i jak najprostszą strukturę. W zakres pracy weszło opracowanie algorytmu doboru zmiennych wejściowych do modeli oraz algorytmu wyznaczania struktury modeli, które następnie oprogramowano. Wyniki badań Algorytmy wyznaczania optymalnych modeli rozmytych Modele optymalne wyznacza się spośród modeli o ustalonych zmiennych wejściowych, o stałej bazie reguł i stałej liczbie zbiorów rozmytych. Ponieważ przy wykonywaniu krótkoterminowych prognoz zapotrzebowania na energię elektryczną dysponuje się zbiorem danych o dużej liczebności, wydziela się z niego zbiór uczący oraz zbiór testujący. Do wyznaczania parametrów modeli jest wykorzystywana metoda gradientów sprzężonych [Findeisen i in. 1977; Osowski 1996]. W celu dodatkowego przyśpieszenia procesu doboru najlepszego modelu optymalizuje się zarówno parametry warstwy fuzyfikacyjnej jak i defuzyfikacyjnej, minimalizując sumaryczny błąd kwadratowy modeli na zbiorze uczącym. Przy wyznaczaniu zmiennych wejściowych do modeli oraz ich struktury jest sprawdzana jakość prognoz obliczonych w oparciu o te modele, przez określenie średniego absolutnego błędu procentowego prognoz ex post (φ) liczonego na zbiorach uczących i testujących. W celu minimalizacji zbioru zmiennych wejściowych modelu, do błędu φ liczonego na zbiorze uczącym modelu dodaje się tzw. człon kary będący iloczynem odpowiednio zdefiniowanego współczynnika kary jednostkowej α i liczby uwzględnionych zmiennych [Lula 2000]. W przeciwieństwie do zbioru uczącego, zmniejszanie błędu φ na zbiorze testującym nie musi być powiązane z minimalizacją odchylenia standardowego tego błędu, którego zbyt wysoka wartość może znacznie obniżyć wiarygodność obliczonych prognoz. Problem ten jest szczególnie istotny w przypadku prognoz dobowych, wyznaczanych w oparciu o modele, dla których zmiennymi wejściowymi są wartości wcześniejszych prognoz. W takim przypadku wystąpienie jednego dużego błędu predykcji w danej godzinie może pociągnąć za sobą znaczne zwiększenie błędów prognoz wykonanych dla kolejnych godzin. Dlatego też do oceny jakości prognoz wyznaczanych na zbiorach testujących zastosowano miernik mbw [Francik 2003], będący sumą błędu φ i odchylenia standardowego absolutnych błędów procentowych tych prognoz. 178
3 Modele rozmyte... Algorytm doboru zmiennych wejściowych do modeli Podstawową czynnością w procesie wyznaczania modeli jest dobór zmiennych wejściowych. Zastosowany w pracy algorytm wyznaczania tych zmiennych obrazuje schemat blokowy pokazany na rysunku 1. Dane wejściowe k = 1 Wybór zmiennych wejściowych k i k + 1 Identyfikacja modeli o k i k + 1 zmiennych wejściowych k = k +1 Tak φ k+1 +α(k+1)<φ k +αk i mbw k+1 <mbw k? Nie Wprowadzenie k zmiennych wejściowych do modelu Stop Rys. 1. Fig. 1. Schemat blokowy doboru zmiennych wejściowych do modelu Block diagram for selecting input variables for a model 179
4 Jerzy Małopolski, Małgorzata Trojanowska Tok postępowania przy wyznaczaniu zmiennych wejściowych przedstawia się następująco: 1. Dane wejściowe Zestawia się wszystkie możliwe zmienne wejściowe oraz zmienną wyjściową. 2. Początkowa liczba zmiennych wejściowych Przyjęto, że początkowa liczba zmiennych wejściowych wynosi jeden. 3. Wybór k i k+1 zmiennych wejściowych do modelu rozmytego Do rozwiązania tego problemu zastosowano w pracy metodę analizy współczynników korelacji [Dąsal 2002]. W metodzie tej zmienne wejściowe powinny być silnie skorelowane ze zmienną wyjściową, a słabo między sobą. 4. Identyfikacja modeli o k i k+1 zmiennych wejściowych Wykorzystując omówiony poniżej algorytm wyznaczania struktury modeli buduje się modele o k i k+1 zmiennych wejściowych. 5. Porównywanie modeli o k i k+1 zmiennych wejściowych Przyjmuje się wartość współczynnik kary jednostkowej α [Lula 2000]. Niech φ k oznacza wartość błędu φ prognozy wyznaczonej na zbiorze uczącym w oparciu o model o k zmiennych wejściowych, a mbw k wartość miernika mbw na zbiorze testującym dla tego samego modelu. Model o k+1 zmiennych wejściowych jest uznawany za lepszy od modelu o k zmiennych, jeśli są spełnione nierówności: φ k+1 + α(k +1) < φ k + αk (1) mbw k+1 < mbw k W takim przypadku zwiększa się k o jeden i wraca do punktu 3. Jeśli któraś z nierówności nie jest spełniona, to przechodzi się do punktu Końcowy wybór k zmiennych wejściowych do modelu rozmytego Stop. Algorytm wyznaczania struktury modeli W pracy do wyznaczania struktury modeli o ustalonych zmiennych wejściowych zastosowano zasadę konstruktywną [Piegat 1999]. Algorytm opracowany w oparciu o tę zasadę obrazuje schemat blokowy przedstawiony na rysunku 2. Tok postępowania przy wyznaczaniu parametrów modelu przedstawia się następująco: 1. Dane wejściowe Ustalone są zmienne wejściowe i zmienna wyjściowa. 2. Początkowa liczba parametrów modelu Procedurę rozpoczyna się od modelu o najprostszej strukturze, przy czym przez k 1 określono liczbę parametrów takiego modelu. Określenie to oznacza modele o k+1 regułach. 3. Wyznaczenie modelu o k n i k n+1 parametrach (k n jest rosnącym ciągiem możliwych liczb parametrów modelu) 180
5 Modele rozmyte... W przypadku, gdy możliwe jest wyznaczenie modeli o tej samej liczbie parametrów, ale o różnych strukturach wybiera się model, dla którego miernik mbw na zbiorze testującym jest najmniejszy. Dane wejściowe n = 1 Wyznaczenie modelu o k n i k n+1 parametrach n = n +1 Tak mbw n+1 < mbw n? Nie Wybrano model o k n parametrach Stop Rys. 2. Fig. 2. Schemat blokowy wyznaczania struktury modelu Block diagram for determining the structure of a model 4. Porównywanie modeli o k n i k n+1 parametrach Niech mbw n oznacza wartość miernika mbw dla wyznaczonego modelu o k n parametrach. Jeśli mbw n+1 < mbw n (2) to n zwiększa się o jeden i wraca do punktu 2. W przeciwnym przypadku przechodzi się do punktu Końcowy wybór modelu o k n parametrach Stop. 181
6 Jerzy Małopolski, Małgorzata Trojanowska Podsumowanie Opracowanie i oprogramowanie algorytmu doboru zmiennych wejściowych do modeli rozmytych oraz algorytmu wyznaczania struktury tych modeli przyśpieszyło proces budowy modeli predykcyjnych opartych na teorii zbiorów rozmytych, dając w ten sposób możność łatwego ich wykorzystania w praktyce prognostycznej przy przewidywaniu zapotrzebowania na energię elektryczną odbiorców wiejskich. Bibliografia Dąsal K Wpływ doboru zmiennych na błąd prognozy w modelu sieci neuronowej. VI Konferencja Naukowa PE 2002 Prognozowanie w elektroenergetyce. Częstochowa. s Findeisen W., Szymanowski J., Wierzbicki A Teoria i metody obliczeniowe optymalizacji. WNT. Warszawa. ISBN Francik S Możliwości wykorzystania SSN do prognozowania sprzedaży maszyn rolniczych w warunkach rynkowych. Inżynieria Rolnicza 12 (54). s Lula P Wykorzystanie sztucznej inteligencji w prognozowaniu. Materiały Seminarium Statsoft. Prognozowanie w przedsiębiorstwie. Warszawa. s Małopolski J., Trojanowska M Wykorzystanie modeli Mamdaniego do predykcji dobowych obciążeń wiejskich sieci elektroenergetycznych. Inżynieria Rolnicza Nr 9 (107). s Osowski S Sieci neuronowe w ujęciu algorytmicznym. WNT. Warszawa. ISBN X. Piegat A Modelowanie i sterowanie rozmyte. AOW EXIT. Warszawa. ISBN Popławski T. 2005a. Application of the Takagi Sugeno (TS) fuzzy logic model for load curves prediction in the local power system. III rd International Scientific Symposium Elektroenergetyka, Stara Lesna Slovak Republic. ISBN Popławski T. 2005b. Zastosowanie rozmytego modelu Mamdaniego do prognoz obciążeń w lokalnych systemach elektroenergetycznych. XII Międzynarodowa Konferencja Naukowa Aktualne problemy w elektroenergetyce APE 05. Gdańsk Jurata. s Trojanowska M., Małopolski J Krótkoterminowe prognozowanie zapotrzebowania na energię elektryczną odbiorców wiejskich przy wykorzystaniu modeli Mamdaniego. Problemy Inżynierii Rolniczej 3(57). s
7 Modele rozmyte... FUZZY MODELS OF POWER DEMAND FOR THE PURPOSES OF SHORT-TERM PREDICTING OF ELECTRIC ENERGY CONSUMPTION IN THE COUNTRY PART I. ALGORITHMS USED TO DETERMINE FUZZY MODELS Abstract. The scope of the research involved development and programming of algorithms for determining fuzzy models, and in particular an algorithm for selecting input variables for models and an algorithm for determining the structure of models. This resulted in the acceleration of the process involving construction of predicting models based on fuzzy set theory, thus making it possible to use them for predicting electric energy consumption in the country. Key words: electric energy, short-term predicting, algorithm, fuzzy model Adres do korespondencji: Jerzy Małopolski; Instytut Inżynierii Rolniczej i Informatyki Uniwersytet Rolniczy w Krakowie ul. Balicka 116B Kraków 183
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH
KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO
Problemy Inżynierii Rolniczej nr 3/2007 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie KRÓTKOTERMINOWE PROGNOZOWANIE
WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH
Inżynieria Rolnicza 9(107)/2008 WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki, Uniwersytet
WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH
Inżynieria Rolnicza 1(110)/2009 WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Małgorzata Trojanowska Katedra Energetyki
PORÓWNANIE PRZYDATNOŚCI WYBRANYCH MODELI ROZMYTYCH DO PREDYKCJI ZAPOTRZEBOWANIA ENERGII ELEKTRYCZNEJ NA TERENACH WIEJSKICH
InŜynieria Rolnicza 7/2005 Małgorzata Trojanowska, Jerzy Małopolski* Zakład Energetyki Rolniczej *Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PORÓWNANIE PRZYDATNOŚCI WYBRANYCH
WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN
Inżynieria Rolnicza 2(9)/7 WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Akademia
ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH
Inżynieria Rolnicza 9(118)/2009 ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej
WYZNACZANIE OBCIĄŻEŃ SZCZYTOWYCH W WIEJSKICH SIECIACH ELEKTROENERGETYCZNYCH
Problemy Inżynierii Rolniczej nr 2/2007 Małgorzata Trojanowska, Krzysztof Nęcka Katedra Energetyki Rolniczej Akademia Rolnicza w Krakowie WYZNACZANIE OBCIĄŻEŃ SZCZYTOWYCH W WIEJSKICH SIECIACH ELEKTROENERGETYCZNYCH
WYKORZYSTANIE LINIOWYCH MODELI ROZMYTYCH DO PROGNOZOWANIA DOBOWEGO ZAPOTRZEBOWANIA ODBIORCÓW WIEJSKICH NA ENERGIĘ ELEKTRYCZNĄ
Problemy Inżynierii Rolniczej nr 4/2008 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Uniwersytet Rolniczy w Krakowie WYKORZYSTANIE LINIOWYCH
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 6(115)/2009 METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy w Krakowie
ZASTOSOWANIE PROGRAMU MATLAB W MODELOWANIU PODCIŚNIENIA W APARACIE UDOJOWYM
Inżynieria Rolnicza 9(118)/2009 ZASTOSOWANIE PROGRAMU MATLAB W MODELOWANIU PODCIŚNIENIA W APARACIE UDOJOWYM Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie. Przedstawiono metodykę
Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków
36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI
OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI
Inżynieria Rolnicza 6(131)/2011 OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI Leonard Woroncow, Ewa Wachowicz Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy przedstawiono wyniki
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych
InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH
ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI
Inżynieria Rolnicza 9(107)/2008 ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie. Przedstawiono metodykę odwzorowania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław PŁACZEK* DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI W artykule
Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
WYZNACZANIE SPADKÓW NAPIĘĆ W WIEJSKICH SIECIACH NISKIEGO NAPIĘCIA
Problemy Inżynierii Rolniczej nr 4/2008 Małgorzata Trojanowska, Krzysztof Nęcka Katedra Energetyki Rolniczej Uniwersytet Rolniczy w Krakowie WYZNACZANIE SPADKÓW NAPIĘĆ W WIEJSKICH SIECIACH NISKIEGO NAPIĘCIA
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Prognozowanie wartości wskaźników poziomu motoryzacji dla wybranych miast w Polsce
URCZYŃKI Jan AMITOWKA Wioleta rognozowanie wartości wskaźników poziomu motoryzacji dla wybranych miast w olsce treszczenie W pracy rozpatrzono przydatność klasycznej metody tendencji rozwojowej do prognozowania
DRZEWA REGRESYJNE I LASY LOSOWE JAKO
DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska www.gdudek.el.pcz.pl
BLOK FUNKCYJNY FUZZY LOGIC W STEROWANIU PLC AUTONOMICZNYM APARATEM UDOJOWYM*
Inżynieria Rolnicza 8(133)/2011 BLOK FUNKCYJNY FUZZY LOGIC W STEROWANIU PLC AUTONOMICZNYM APARATEM UDOJOWYM* Marcin Tomasik, Henryk Juszka, Stanisław Lis Katedra Energetyki i Automatyzacji Procesów Rolniczych,
ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al
LESZEK A. DOBRZAŃSKI, TOMASZ TAŃSKI ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al APPLICATION OF NEURAL NETWORKS FOR OPTIMISATION OF Mg-Al ALLOYS HEAT TREATMENT
KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK
Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych
Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych Politechnika Warszawska Zakład Systemów Ciepłowniczych i Gazowniczych Prof. dr hab. inż. Andrzej J. Osiadacz Dr hab. inż. Maciej
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
CECHY TECHNICZNO-UŻYTKOWE A WARTOŚĆ WYBRANYCH TECHNICZNYCH ŚRODKÓW PRODUKCJI W ROLNICTWIE
Inżynieria Rolnicza 9(107)/2008 CECHY TECHNICZNO-UŻYTKOWE A WARTOŚĆ WYBRANYCH TECHNICZNYCH ŚRODKÓW PRODUKCJI W ROLNICTWIE Zbigniew Kowalczyk Katedra Inżynierii Rolniczej i Informatyki, Uniwersytet Rolniczy
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
ZASTOSOWANIE REGULATORÓW ROZMYTYCH W ŚLEDZENIU WEKTORA TRAJEKTORII STANÓW WIELOZBIORNIKOWEGO SYSTEMU WODNOGOSPODARCZEGO (CZĘŚĆ II.
WOJCIECH Z. CHMIELOWSKI ZASTOSOWANIE REGULATORÓW ROZMYTYCH W ŚLEDZENIU WEKTORA TRAJEKTORII STANÓW WIELOZBIORNIKOWEGO SYSTEMU WODNOGOSPODARCZEGO (CZĘŚĆ II. UKŁAD STERUJĄCY) APPLICATION OF FUZZY REGULATORS
ZAPOTRZEBOWANIE NA PROGRAMY KOMPUTEROWE W ROLNICTWIE NA PRZYKŁADZIE GOSPODARSTW WOJEWÓDZTWA MAŁOPOLSKIEGO
Inżynieria Rolnicza 9(107)/2008 ZAPOTRZEBOWANIE NA PROGRAMY KOMPUTEROWE W ROLNICTWIE NA PRZYKŁADZIE GOSPODARSTW WOJEWÓDZTWA MAŁOPOLSKIEGO Michał Cupiał Katedra Inżynierii Rolniczej i Informatyki, Uniwersytet
WYBÓR PUNKTÓW POMIAROWYCH
Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika
PRACE INśYNIERSKIE STUDIA NIESTACJONARNE Rok akademicki 2011/2012
PRACE INśYNIERSKIE STUDIA NIESTACJONARNE Rok akademicki 2011/2012 Projekt instalacji elektrycznej w budynku uŝytkowym (Project of electric installation in usable building) Praca zawierać będzie wymagania
Inżynieria Rolnicza 3(121)/2010
Inżynieria Rolnicza 3(121)/2010 METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE. CZ. III: PRZYKŁADY ZASTOSOWANIA METODY Sławomir Francik
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE
Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption
Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption Wojciech Zalewski Politechnika Białostocka, Wydział Zarządzania,
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
wagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA
Inżynieria Rolnicza 7(95)/2007 WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA Andrzej Turski, Andrzej Kwieciński Katedra Maszyn i Urządzeń Rolniczych, Akademia Rolnicza w Lublinie Streszczenie: W pracy przedstawiono
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO
5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
WPŁYW WSTĘPNEGO PRZETWARZANIA DANYCH NA JAKOŚĆ KRÓTKOTERMINOWYCH PROGNOZ ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ
I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 213: Z. 3(145) T.1 S. 291-299 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org WPŁYW WSTĘPNEGO PRZETWARZANIA DANYCH NA JAKOŚĆ
InŜynieria Rolnicza 14/2005. Streszczenie
Michał Cupiał Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PROGRAM WSPOMAGAJĄCY NAWOśENIE MINERALNE NAWOZY 2 Streszczenie Przedstawiono program Nawozy 2 wspomagający nawoŝenie
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
KATALOG MASZYN I POJAZDÓW ROLNICZYCH MASZYNY-3
Inżynieria Rolnicza 9(118)/2009 KATALOG MASZYN I POJAZDÓW ROLNICZYCH MASZYNY-3 Michał Cupiał Instytut Inżynierii Rolniczej i Informatyki, Uniwersytet Rolniczy w Krakowie Streszczenie. Przedstawiono internetową
MODELOWANIE PROCESU OMŁOTU PRZY WYKORZYSTANIU SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 13/2006 Andrzej Złobecki *, Ryszard Macura **, Magdalena Michalczyk ** * Katedra Inżynierii Mechanicznej i Agrofizyki ** Katedra Chłodnictwa i Koncentratów Spożywczych Akademia Rolnicza
OPRACOWANIE ZAŁOŻEŃ I REALIZACJA LABORATORYJNEGO SYMULATORA DO BADANIA MODUŁU PODPOWIEDZI
IEN 2013 wszelkie prawa zastrzeżone www.ien.gda.pl e-mail: ien@ien.gda.pl OPRACOWANIE ZAŁOŻEŃ I REALIZACJA LABORATORYJNEGO SYMULATORA DO BADANIA MODUŁU PODPOWIEDZI (SYSTEMU EKSPERTOWEGO) SYSTEMÓW OBSZAROWEJ
System wspomagania harmonogramowania przedsięwzięć budowlanych
System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika
METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH
Inżynieria Rolnicza 2(100)/2008 METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH Krzysztof Nalepa, Maciej Neugebauer, Piotr Sołowiej Katedra Elektrotechniki i Energetyki, Uniwersytet Warmińsko-Mazurski w Olsztynie
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO WYZNACZENIA CECH O NAJWIĘKSZEJ SILE DYSKRYMINACJI WIELKOŚCI WSKAŹNIKÓW POSTĘPU NAUKOWO-TECHNICZNEGO
Inżynieria Rolnicza 8(96)/2007 ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO WYZNACZENIA CECH O NAJWIĘKSZEJ SILE DYSKRYMINACJI WIELKOŚCI WSKAŹNIKÓW POSTĘPU NAUKOWO-TECHNICZNEGO Agnieszka Prusak, Stanisława Roczkowska-Chmaj
TRÓJFAZOWY RÓWNOLEGŁY ENERGETYCZNY FILTR AKTYWNY ZE Z ZMODYFIKOWANYM ALGORYTMEM STEROWANIA OPARTYM NA TEORII MOCY CHWILOWEJ
TRÓJFAZOWY RÓWNOLEGŁY ENERGETYCZNY FILTR AKTYWNY ZE ZMODYFIKOWANYM ALGORYTMEM STEROWANIA OPARTYM NA TEORII MOCY CHWILOWEJ Instytut Inżynierii Elektrycznej, Wydział Elektrotechniki, Elektroniki i Informatyki,
ANALIZA STATYSTYCZNA ZAPOTRZEBOWANIA NA CIEPŁO W GMINACH WIEJSKICH
MOTROL, 2008, 10, 126 130 ANALIZA STATYSTYCZNA ZAPOTRZEBOWANIA NA CIEPŁO W GMINACH WIEJSKICH Małgorzata Trojanowska, Tomasz Szul Katedra Energetyki Rolniczej, Uniwersytet Rolniczy w Krakowie Streszczenie.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ
Inżynieria Rolnicza 2(90)/2007 PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ Krzysztof Nowakowski,
ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 43-48, Gliwice 2010 ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO TOMASZ CZAPLA, MARIUSZ PAWLAK Katedra Mechaniki Stosowanej,
METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE CZ. I: ZAŁOŻENIA METODY
Inżynieria Rolnicza 9(118)/2009 METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE CZ. I: ZAŁOŻENIA METODY Sławomir Francik Katedra Inżynierii
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
WYKORZYSTANIE ALGORYTMÓW ROZPOZNAWANIA OBRAZU W BADANIACH NAUKOWYCH NA PRZYKŁADZIE PROGRAMU ZIEMNIAK-99
Inżynieria Rolnicza 6(94)/2007 WYKORZYSTANIE ALGORYTMÓW ROZPOZNAWANIA OBRAZU W BADANIACH NAUKOWYCH NA PRZYKŁADZIE PROGRAMU ZIEMNIAK-99 Michał Cupiał Katedra Inżynierii Rolniczej i Informatyki, Akademia
SAMOORGANIZACYJNE MODELOWANIE ROZMYTE Z WYKORZYSTANIEM METOD KLASTERYZACJI DANYCH
Inżynieria Rolnicza 6(131)/2011 SAMOORGANIZACYJNE MODELOWANIE ROZMYTE Z WYKORZYSTANIEM METOD KLASTERYZACJI DANYCH Tomasz Kapłon Katedra Energetyki i Automatyzacji Procesów Rolniczych, Uniwersytet Rolniczy
WYKORZYSTANIE ZASOBÓW PRACY UPRZEDMIOTOWIONEJ A PRACOCHŁONNOŚĆ PRODUKCJI W GOSPODARSTWACH ROLNYCH
Inżynieria Rolnicza 5(123)/2010 WYKORZYSTANIE ZASOBÓW PRACY UPRZEDMIOTOWIONEJ A PRACOCHŁONNOŚĆ PRODUKCJI W GOSPODARSTWACH ROLNYCH Agnieszka Peszek, Sylwester Tabor Instytut Inżynierii Rolniczej i Informatyki,
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 1. OBSZARY MODELOWANIA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Jerzy TCHÓRZEWSKI* MODELOWANIE NEURONALNE ROZWOJU SYSTEMU ELEKTROENERGETYCZNEGO. CZĘŚĆ 1. OBSZARY MODELOWANIA W pracy
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Wypieranie CO 2 z obszaru energetyki WEK za pomocą technologii OZE/URE. Paweł Kucharczyk Pawel.Kucharczyk@polsl.pl. Gliwice, 28 czerwca 2011 r.
Politechnika Śląska Instytut Elektroenergetyki i Sterowania Układów Wypieranie CO 2 z obszaru energetyki WEK za pomocą technologii OZE/URE Paweł Kucharczyk Pawel.Kucharczyk@polsl.pl Gliwice, 28 czerwca
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
Wykład organizacyjny
Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Wykład organizacyjny dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl
DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2
InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Inteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Inteligentne Systemy Prognozowania
J.S. Zieliński, W. Bardzki, W. Bartkiewicz, Z. Gontar, B. Matusiak, A. Pamuła Katedra Informatyki, Uniwersytet Łódzki Inteligentne Systemy Prognozowania Nauka dla Biznesu, Łódź 2003 Wprowadzenie Artykuł
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =