Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
|
|
- Weronika Janik
- 9 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11
2
3 Spis treści Rozdział 1. Metoda programowania dynamicznego Przykład Analiza sytuacji decyzyjnej Budowa modelu matematycznego Rozwiązanie zadania decyzyjnego Interpretacja rozwiązania Metoda programowania dynamicznego Ogólna metoda rozwiązania Bibliografia
4
5 Rozdział 1 Metoda programowania dynamicznego Programowanie dynamiczne jest metodą rozwiązywania zadań optymalizacyjnych, które na mocy pewnych własności, można sformułować jako poszukiwanie ciągu decyzji. Metoda ta ma zastosowanie zarówno dla problemów dyskretnych, jak i ciągłych [1]. W tym rozdziale przedstawimy najprostszy typ problemów, do których można zastosować programowanie dynamiczne. Będą to problemy dyskretne z funkcją celu będącą sumą lub iloczynem Przykład Komiwojażer podróżujący po Dzikim Zachodzie (około 100 lat temu) miał przejechać pewna trasę pociągiem. Miał do wyboru kilka połączeń, wiodących przez różne miasta. Komiwojażerowi bardzo zależało na bezpiecznej podróży. Dowiedział się, że Towarzystwo Ubezpieczeniowe oferuje polisy ubezpieczeniowe na wypadek napadu. Na różnych odcinkach drogi koszt polisy był różny. Komiwojażer szybko doszedł do wniosku, że polisy są tańsze na bezpieczniejszych trasach, wobec tego najbezpieczniejszy przejazd, to będzie przejazd minimalizujący koszty ubezpieczenia. Graf na rys. 1.1 przedstawia możliwe do wyboru trasy przejazdu z miejsca 1 do miejsca 10. Ceny polis na trasie od punktu i do punktu j (oznaczona c ij ) są przedstawione jako wagi na łukach w grafie Rysunek 1.1. Koszty podróży komiwojażera
6 6 Rozdział 1. Metoda programowania dynamicznego Analiza sytuacji decyzyjnej W pierwszej chwili komiwojażer postanowił wyruszyć do miasta 2, gdyż na tym odcinku koszt polisy był najmniejszy, a potem na każdym etapie wybierać kolejne miasto, do którego ubezpieczenie jest najtańsze. W ten sposób zaplanował trasę Łączny koszt ubezpieczenia na tej trasie to 13$. Po chwili zastanowienia zauważył jednak, że istnieje tańsze rozwiązanie, mianowicie łączny koszt ubezpieczenia na trasie wynosi 11$. Komiwojażer zaczął się zastanawiać, czy istnieje inna trasa, o jeszcze niższym koszcie ubezpieczenia. Analiza wszystkich możliwości wymagałaby obliczenia 3*3*2=18 sum po składniki, czyli wykonania 72 działań. W wypadku tak małej sieci połączeń nie stanowi to dużego problemu, gdyby jednak analiza dotyczyła np. obecnej sieci połączeń lotniczych w USA, to rozmiar problemu mógłby przekroczyć możliwości średniej klasy komputera Budowa modelu matematycznego Problem przed jakim stanął komiwojażer można modelować na kilka sposobów, np. jako problem poszukiwania najkrótszej ścieżki w grafie. Poniżej zaproponujemy nieco bardziej ogólne podejście. Nasz problem polega na minimalizacji kosztów ubezpieczenia podróży, czyli ma postać: przy ograniczeniach: zminimalizować z = c(i, j)x ij i=1 j S n+1 x ij = 1, i S n, n = 0, 1, 2, 3 x ij = x ij, n = 0, 1, 2, 3 i S n j S n+1 gdzie zmienna x ij przyjmuje wartość 1, gdy komiwojażer włącza odcinek (i, j) do trasy swojej podróży i wartość 0 w przeciwnym wypadku. Ponadto S n oznacza zbiór miast na etapie n (czyli takich, do których można dojechać z miasta 1 w n odcinkach, np. S 2 = {5, 6, 7}), a c(i, j) koszt polisy na odcinku (i, j). Otrzymaliśmy problem programowania liniowego całkowitoliczbowego. W ogólności rozwiązanie takiego problemu jest trudne. Możemy jednak wykorzystać pewne własności tego szczególnego problemu i rozwiązać go metodą programowania dynamicznego Rozwiązanie zadania decyzyjnego Komiwojażer podróżuje odcinkami. Powiemy, że komiwojażer znajduje się na n-tym etapie podróży, jeżeli pokonał już n odcinków trasy, gdzie n = 1, 2, 3,. Każda podróż składa się z odcinków - etapów. Na każdym etapie komiwojażer podejmuje decyzję, jaki będzie kolejny cel jego podróży. Niech s n oznacza numer miasta, w którym komiwojażer znalazł się na n-tym etapie podróży. Zbiór miast, do których można dotrzeć z miasta 1 pokonując n odcinków będzie zbiorem stanów na etapie n. Łatwo zauważyć, że s 0 = 1 oraz, że s = 10. Oznaczmy przez x n+1 numer miasta, do którego
7 1.1. Przykład 7 komiwojażer zdecydował pojechać, czyli cel podróży zaczynającej się w s n. Zatem x n+1 jest decyzją komiwojażera podjętą na etapie n. Zauważmy, że x n+1 = s n+1. Koszt polisy na odcinku (s n, x n+1 ) oznaczmy przez c(s n, x n+1 ). Zauważmy, że gdy komiwojażer znajdzie się na etapie 3, to nie ma już wyboru i musi jechać do miasta 10. Jeżeli na etapie 3 znalazł sie w mieście 8, to polisa na ostatnim odcinku będzie kosztowała 3$, a jeżeli w mieście 9, to $. Powyższą obserwację zapisano w tablicy 1.1. Tablica 1.1. Koszt decyzji na etapie n = 3 Stan s 3 Koszt decyzji f 3(s 3, 10) f3 (s 3) Decyzja x Na etapie drugim w każdym stanie możliwe są dwie decyzje. Jednak wybór decyzji przesądza o wyborze i koszcie trasy do końca podróży. Na przykład, jeżeli komiwojażer będąc w mieście 5 wybierze podróż do miasta 8, to można obliczyć koszt podróży z 5 do 10 przez 8 jako: 1+3=. Obliczenie kosztów pozostałych decyzji na tym etapie przedstawiono w tablicy 1.2. Tablica 1.2. Koszt decyzji na etapie n = 2 Stan s 2 Koszt decyzji f2 Decyzja (s f 2) 2(s 2, 8) f 2(s 2, 9) x Natomiast na etapie 1 komiwojażer ma do wyboru 3 decyzje. Jeżeli dokona wyboru, to z tablicy 1.2 może odczytać koszt najtańszej polisy z wybranego miasta do końca podróży. Na przykład, jeżeli z miasta 2 komiwojażer zdecyduje się jechać do miasta 5, to koszt najtańszej polisy na trasie od 2 do 10 przez 5 obliczymy jako sumę kosztu ubezpieczenia na trasie (2,5) oraz najmniejszego kosztu ubezpieczenia na trasie z miasta 5 do 10, który można odczytać z tablicy 1.2, czyli: 7+=11. Obliczenia dla pozostałych stanów i decyzji na tym etapie przedstawiono w tablicy 1.3. Tablica 1.3. Koszt decyzji na etapie n = 1 Stan s 1 Koszt decyzji f2 Decyzja (s f 1) 2(s 1, 5) f 2(s 1, 6) f 2(s 1, 7) x lub lub 6 Na etapie zero, czyli na początku podróży w mieście 1 są do wyboru 3 decyzje, ale tylko jeden stan. Koszty decyzji na tym etapie zawiera tablica 1.. Uogólniając: dla każdego miasta możemy wyznaczyć najmniejszy łączny koszt polisy na trasie rozpoczynającej się w tym mieście i kończącej w mieście 10, przy założeniu, że w mieście s n została podjęta decyzja x n+1. Koszt ten oznaczymy przez f n (s n, x n+1 ). Znajdując minimum po wszystkich miastach, do których można dotrzeć bezpośrednio z miasta s n otrzymamy najmniejszy koszt polisy na trasie prowadzącej z s n do celu podroży, który oznaczamy jako fn(s n ). Konsekwentnie, f0 (1) będzie najmniejszym kosztem polisy na całej trasie. Problem polega zatem na znalezieniu minimalnej wartości funkcji
8 8 Rozdział 1. Metoda programowania dynamicznego Tablica 1.. Koszt decyzji na etapie n = 0 Koszt decyzji Stan s 0 f2 Decyzja (s f 0) 2(s 0, 2) f 2(s 0, 3) f 2(s 0, ) x lub przy ograniczeniach: z = f 0 (1) f n(s n ) = min x n+1 {c(s n, x n+1 ) + f n+1(x n+1 )}, n = 0, 1, 2, 3 f (10) = 0 s 0 = 1, s = 10 Problem ten można rozwiązać od końca, jak pokazano powyżej dzięki temu, że optymalna decyzja w stanie s n pozostaje optymalna niezależnie od tego, jakie decyzje poprzedziły ją na wcześniejszych etapach, pod warunkiem, że doprowadziły do stanu s n Interpretacja rozwiązania Najniższy możliwy koszt podróży wynosi 11$. Można go osiągnąć na kilka sposobów. Komiwojażer może na pierwszym etapie wybrać miasto 3 lub. Jeżeli znajdzie się w mieście 3, to kolejnym odwiedzonym miastem powinno być 5 lub 6. Jeżeli wybierze, to na następnym etapie powinien sie udać do miasta 5. Na etapie 2 będąc w mieście 5 kieruje się do 8, a będąc w mieście 6 jako kolejny cel wybiera miasto 9. Otrzymujemy zatem następujące trasy: , oraz Na każdej z tych tras koszt polisy wynosi 11$ Metoda programowania dynamicznego Metoda programowania dynamicznego została opracowana przez Richarda Bellmana w połowie dwudziestego wieku. Zasadniczym krokiem w skonstruowaniu algorytmu programowania liniowego jest sformułowanie funkcji rekurencyjnej, która wyraża optymalną wartość funkcji celu danego problemu jako funkcję (najczęściej sumę lub iloczyn) optymalnych wartości funkcji celu podproblemów o mniejszych rozmiarach. Procedura rozwiązania polega na znalezieniu optymalnej wartości funkcji celu całego zagadnienia przez rozwiązanie podproblemów od najmniejszego do największego. Metoda programowania dynamicznego ma zastosowanie do rozwiązywania tzw. problemów bez pamięci, spełniających własność Markowa (Własność 1.1). Własność 1.1 (Własność Markowa) Mówimy, że wieloetapowy proces decyzyjny ma własność Markowa, jeżeli po dowolnej liczbie decyzji, np. k, wpływ pozostałych etapów procesu decyzyjnego na wartość funkcji celu f zależy tylko od stanu procesu przy końcu k-tego etapu i od decyzji następnych.
9 1.2. Metoda programowania dynamicznego 9 Bellman sformułował własność 1.2, nazywaną zasadą optymalności Bellmana, która uzasadnia poprawność stosowania procedury rekurencyjnej do rozwiązywania problemów z własnością Markowa. Własność 1.2 (Zasada optymalności Bellmana) Dla wieloetapowego procesu decyzyjnego z własnością Markowa strategia optymalna ma tę własność, że jakikolwiek byłby stan początkowy i decyzja początkowa, pozostałe decyzje muszą tworzyć strategię optymalną z punktu widzenia stanu wynikłego z pierwszej decyzji Ogólna metoda rozwiązania Posługując się zasadą optymalności można sprowadzić zadanie znalezienia minimum funkcji N zmiennych do rozwiązania ciągu N zadań, polegających na znalezieniu minimum funkcji jednej zmiennej. Metodę programowania dynamicznego można zastosować, jeżeli spełnione są następujące założenia: problem może być podzielony na etapy, na każdym etapie wymagane jest podjęcie decyzji, z każdym etapem związana jest pewna liczba stanów, skutkiem decyzji podjętej na każdym etapie jest transformacja bieżącego stanu w stan związany z następnym etapem, w danym stanie optymalna decyzja dla pozostałych etapów jest niezależna od decyzji podjętych na poprzednich etapach. Przyjmijmy następujące oznaczenia: N - liczba stanów, s n - stan na etapie n (n = 1,..., N), x n+1 - decyzja na etapie n (n = 1,..., N), f n (s n, x n+1 ) - najlepsza wartość maksymalizowanej (minimalizowanej) funkcji celu dla podproblemu obejmującego stany s n, s n+1,..., s N, jeżeli na etapie n w stanie s n podjęto decyzję x n+1, f n(s) - maksymalna (minimalna) wartość f n (s, x n+1 ) po wszystkich możliwych wartościach x n+1 (decyzjach). Podjęcie decyzji x n+1 w stanie s n na etapie n jednoznacznie określa stan s n+1, w jakim znajdzie sie proces na etapie (n + 1). Zależności te można zilustrować graficznie (rys. 1.2). Sposób postępowania omówiono poniżej. Metoda programowania dynamicznego Krok 1. Znaleźć optymalną decyzję dla wszystkich stanów na końcowym etapie. Krok 2. Znaleźć zależność rekurencyjną opisującą optymalną decyzję dla każdego stanu na etapie n, na podstawie informacji o decyzjach optymalnych dla każdego stanu na etapie (n + 1). Krok 3. Posługując się zależnością rekurencyjną postępować od końca do początku, etap po etapie, znajdując na każdym z nich optymalną decyzję (ciąg decyzji) aż do znalezienia optymalnego ciągu decyzji dla stanu początkowego.
10 10 Rozdział 1. Metoda programowania dynamicznego Etap n Etap n + 1 s n s n f n(s n ) = min xn {f n (s n, x n+1 )} x n+1 x n+1 f n+1 (s n+1 ). s n+1... f n+1 (s n+1 ) Rysunek 1.2. Przejście ze stanu na etapie n do stanu na etapie n + 1
11 Bibliografia [1] J.G. Ecker, M. Kupferschmid. Introduction to Operations Research. John Wiley & Sons, New York, 1988.
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Programowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
Algorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
Programowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK405 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/2016 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Opis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Programowanie Dynamiczne dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 14 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Rozdział 9 PROGRAMOWANIE DYNAMICZNE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Komputerowe wspomaganie rozwiązywania zadań programowania nieliniowego Zachodniopomorski Uniwersytet Technologiczny
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)
& Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Badania
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
WŁASNOŚCI FUNKCJI. Poziom podstawowy
WŁASNOŚCI FUNKCJI Poziom podstawowy Zadanie ( pkt) Które z przyporządkowań jest funkcją? a) Każdej liczbie rzeczywistej przyporządkowana jest jej odwrotność b) Każdemu uczniowi klasy pierwszej przyporządkowane
Temat 9. Zabłocone miasto Minimalne drzewa rozpinające
Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
ANALIZA SIECIOWA PROJEKTÓW REALIZACJI
WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
INSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n
PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;
Programowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt
Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ
1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego
Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Badania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia