Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23"

Transkrypt

1 Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

2 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

3 Przykład 1 : Transport Pewien wytwórca posiada centrale zbytu z Lublinie, Łodzi i Szczecinie. Centrale te posiadaja odpowiednio 20, 40 i 40 jednostek produktu. Punkty sprzedaży zamówiły nastepujace ilości jednostek produktu: Bydgoszcz - 15, Częstochowa - 20, Katowice - 25, Sopot - 15, Warszawa Koszt transportu jednostki (w zł) z każdej centrali zbytu do dowolnego punktu sprzedaży podaje następujaca tablica: Bydgoszcz Częstochowa Katowice Sopot Warszawa Lublin Łódź Szczecin Należy tak zaplanować dystrybucję produktu, by koszt transportu był minimalny. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

4 Przykład 2 : Technologia produkcji Dyrektor pewnego przedsiębiorstwa powinien obsadzić trzy stanowiska, które wymagaja różnych kwalifikacji i praktyki zawodowej, przy czym ma do dyspozycji trzech pracowników. Ze względu na różne ich kwalifikacje i doświadczenie zawodowe wartość (dla przedsiebiorstwa) każdego z tych pracowników zależy od stanowiska, na którym jest on zatrudniony. Poniższa tabela zawiera oceny wartości poszczególnych pracowników zatrudnionych na poszczególnych stanowiskach Stanowisko I Stanowisko II Stanowisko III Pracownik A Pracownik B Pracownik C Należy tak rozmieścić pracowników na rozważanych stanowiskach, by całkowita ich wartość dla przedsiebiorstwa była maksymalna. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

5 Przykład 3 : Dietetyka Zadaniem dietetyka jest opracowanie składu porannej owsianki tak, aby zawierała ona niezbedne dzienne zapotrzebowanie organizmu na określone składniki odżywcze i jednocześnie była możliwie najtańsza. Dietetyk ma dyspozycji płatki Corn Flakes i Nesquik. Śniadanie powinno zawierać co najmniej 1 mg witaminy B1, 12 mg zelaza i mieć wartość energetyczna równa 360 kcal. 100 g płatków Corn Flakes zawiera 1, 2 mg witaminy B1, 12 mg zelaza i ma wartość energetyczna równa 358 kcal, natomiast 100 g płatków Nesquik zawiera 1, 5 mg witaminy B1, 10 mg zelaza i ma wartość energetyczna równa 390 kcal. Ponadto 100 g płatków Corn Flakes kosztuje 32 gr, a 100 g płatków Nesquik - 36 gr. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

6 Zadanie programowania liniowego może być sformułowane w postaci: max(f(x 1, x 2,... x n )) F(x 1, x 2,... x n ) = c 1 x 1 + c 2 x c n x n funkcja celu a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2... a m1 x n + a a2 x n + + a mn x n b m ograniczenia x 1 0, x 2 0,..., x n 0 x 1, x 2,..., x n zmienne decyzyjne Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

7 lub w zapisie macierzowym: max ( (c 1 c 2... c n )(x 1 x 2... x n ) T ), a 11 a 12 a 1n a 21 a 22 a 2n... a m1 a m2 a mn x 1 x 2. x n b 1 b 2. b m, (x 1 x 2... x n ) (0, 0,... 0). Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

8 Podejmujac decyzje szukamy zawsze rozwiazania lub zbioru rozwiazań, które zmaksymalizuje użyteczność wybranego działania i zminimalizuje poniesione koszty. Programowanie liniowe to maksymalizacja lub minimalizacja liniowej funkcji wielu zmiennych, gdy zmienne te, lub niektóre z nich, podlegaja liniowym warunkom ograniczajacym w postaci równań lub nierówności. Nazwa "programowanie" wskazuje w tym kontekście na schemat działań. Maksymalizację funkcji f można zastapić minimalizacja funkcji f. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

9 Szczególne zastosowanie programowania liniowego: optymalny wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo w celu zmaksymalizowania zysku lub przychodu ze sprzedaży wybór technologii produkcji określenie skali czy intensywności dostępnych procesów technologicznych, aby wytworzyć określone ilości produktów przy możliwie najniższych kosztach optymalizacja składu mieszanin jakie ilości produktów żywnościowych należy zakupić, aby przy racjonalnym zaspokojeniu potrzeb organizmu obniżyć do minimum koszty wyżywienia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

10 Przykład Chcemy zmaksymalizować funkcję 50x + 100y przy ograniczeniach 1) 10x + 5y 2500, 2) 4x + 10y 200 3) x 0 i y 0. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

11 Przykład zagadnienie optymalizacji diety Wiemy, że 1 kg chleba zawiera 75 g białka i ma 2500 kalorii, a 1 kg sera zawiera 250 g białka i ma 5000 kalorii. Dzienna dieta powinna zawierać co najmniej 100 g białka i mieć 3000 kalorii. Należy znaleźć najtańsza dietę, złożona z chleba i sera, przy założeniu, że 1 kg chleba kosztuje 5 zł, a sera 20 zł. Niech x będzie poszukiwana liczba kilogramów chleba, a y sera. Mamy: min ( 5x + 20y ) cena 2500x y 3000 kaloryczność 75x + 250y 100 zawartość białka x 0, y 0 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

12 Inaczej: min ( 5x + 20y ) 2500x 5000y 75x 250y x 0, y lub równoważnie (warunki zapisane jako układ równań) min ( 5x + 20y ) 2500x 5000y + z 1 75x 250y + z 2 x 0, y 0, z 1 0, z 2 0 = 3000 = 100 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

13 Graficzne rozwiazanie zagadnień programowania liniowego Jeżeli w modelu zagadnienia programowania liniowego występuja dwie zmienne decyzyjne (x i y), to rozwiazanie takiego zadania możemy wyznaczyć graficznie. w układzie współrzędnych zaznaczamy zbiór punktów spełniajacych wszystkie warunki (ograniczenia). Otrzymujemy pewien wielobok, który jest zbiorem rozwiazań dopuszczalnych. Jeżeli zbiór rozwiazań dopuszczalnych jest ograniczony i domknięty to liniowa funkcja celu osiaga wartość najmniejsza i największa. Liniowa funkcja celu może przyjmować wartości ekstremalne albo w wierzchołkach albo na całych krawędziach. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

14 Schemat 1 zaznaczamy na rysunku warstwicę F(x, y) = 0 (prosta określajaca zerowa wartość funkcję celu). Należy znaleźć taki punkt ze zbioru rozwiazań dopuszczalnych, w którym prosta równoległa do F(x, y) = 0 jest najdalej odsunięta w górę. Funkcja celu F(x, y) osiaga tam wartość największa. warstwica F(x, y) = z max najbardziej wysunięta w górę, wyznacza największa wartość funkcji celu (z wykresu odczytujemy wierzchołek (x, y) i stad mamy osiagan a wartość największa) warstwica F(x, y) = z min najbardziej wysunięta w dół, wyznacza najmniejsza wartość funkcji celu (z wykresu odczytujemy wierzchołek (x, y) i stad mamy osiagan a wartość najmniejsza) Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

15 Schemat 2 (trochę prostszy) 1) wyznaczyć obszar rozwiazań dopuszczalnych 2) wyznaczamy wierzchołki tego obszaru 3) wyznaczamy wartość funkcji celu we wszystkich wierzchołkach 4) Jeżeli obszar dopuszczalnych decyzji jest ograniczony i domknięty, to spośród tych wartości wybieramy wartość największa i najmniejsza. 5) Jeżeli obszar dopuszczalnych decyzji nie jest ograniczony i domknięty, to maksimum albo minimum nie istnieje. 6) Jeżeli ta sama wartość ekstremalna jest przyjmowana w kilku wierzchołkach, to analizujemy rysunek, czy to ekstremum nie jest osiagane na całym boku. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

16 Przykład 1 Znaleźć najmniejsza i największa wartość funkcji F(x, y) = 50x + 100y przy warunkach 10x + 5y 2500, 4x + 10y 200 x 0, y 0. y 2x y 2 5 x + 20, x 0, y 0 Rysunek: zbiór dopuszczalnych decyzji Rysunek: zbiór dopuszczalnych decyzji (w przybliżeniu ) Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

17 wierzchołki (0, 0), (50, 0), (0, 20) Sposób 1 F(x, y) = 0 50x + 100y = 0 y = 0.5x Rysunek: poziomica F (x, y) = 0 i jej przesunięcia przechodzace przez wierzchołki Widać że najwyżej w górę przesunięta jest poziomica przechodzaca przez wierzchołek (50, 0), zatem F max = F(50, 0) = = Widać że najniżej wysunięta jest poziomica przechodzaca przez wierzchołek (0, 0), zatem F min = F(0, 0) = = 0. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

18 Sposób 2: x y F(x, y) = 50x + 100y min max F max = F(50, 0) = 2500 F min = F(0, 0) = 0 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

19 Przykład 2 Znaleźć najmniejsza i największa wartość funkcji F(x, y) = 5x + 20y przy warunkach 2500x 5000y 75x 250y x 0, y y 0.5x y 0.3x + 0.4, x 0, y 0 Rysunek: zbiór dopuszczalnych decyzji Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

20 wierzchołki :(0, 0.6), ( 4 3, 0), (1, 0.1) Sposób 1 Poziomica F(x, y) = 0 5x + 20y = 0 y = 1 4 x ponieważ 0.25 > 0.3 (porównujac współczynniki kierunkowe zerowej poziomicy i prostych opisujacych brzeg), to przesuwajac poziomicę y = 1 4x w górę, pierwszym punktem, w którym dotknie ona zbioru dopuszczalnych decyzji jest wierzchołek ( 4 3, 0) F max nie jest osiagana, bo obszar dopuszczalnych decyzji jest nieograniczony F min = F( 4 3, 0) = 20 3 Sposób 2: x y F(x, y) = 5x + 20y min F max nie istnieje, bo obszar nieograniczony F min = F( 4 3, 0) = 20 3 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

21 Przykład 3 Znaleźć największa i najmniejsza wartość funkcji F(x, y) = 3x + y przy warunkach 4x y 4 3x + y 6 x y 6 x 0, y 0 y 4x 4 y 3x + 6, y x 6 x 0, y 0 Rysunek: zbiór dopuszczalnych decyzji Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

22 zbiór rozwiazań dopuszczalnych jest nieograniczony wierzchołki : (2, 0), (6, 0), (1 3 7, ) Poziomica F(x, y) = 0 3x + y = 0 y = 3x ponieważ poziomica y = 3x jest równoległa do prostej y = 3x + 6, to z min = 6 dla wszystkich punktów na prostej y = 3x + 6 dla x ( 10 7, 2) z max nie jest osiagana Sposób 2: x y F(x, y) = 3x + y min = 6 min F max nie istnieje, bo obszar nieograniczony F min = 6 na całym odcinku y = 3x + 6 dla x ( 10 7, 2), bo prosta y = 3x + 6 jest równoległa do poziomicy y = 3x. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

23 Dziękuję za uwagę! Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego.

Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego. Wydział Matematyki Programowanie liniowe Ćwiczenia Zestaw. Modelowanie zadań programowania liniowego. Zadania dotyczące zagadnienia planowania produkcji Zadanie.. Zapisać następujące zadanie w postaci

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

4. PROGRAMOWANIE LINIOWE

4. PROGRAMOWANIE LINIOWE 4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

1 Przykładowe klasy zagadnień liniowych

1 Przykładowe klasy zagadnień liniowych & " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7 Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

Badania operacyjne. 1 Programowanie liniowe. kierunek Informatyka, studia II stopnia ćwiczenia. 1.1 Modelowanie

Badania operacyjne. 1 Programowanie liniowe. kierunek Informatyka, studia II stopnia ćwiczenia. 1.1 Modelowanie Badania operacyjne kierunek Informatyka studia II stopnia ćwiczenia Programowanie liniowe Modelowanie Zadanie Producent odzieży powinien określić ile kurtek i płaszczy należy wyprodukować tak aby zysk

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Programowanie liniowe w logistyce

Programowanie liniowe w logistyce Programowanie liniowe w logistyce kierunek Informatyka, studia I stopnia ćwiczenia Programowanie liniowe Modelowanie Zadanie Zapisać nast epujace zadanie w postaci zadania programowania liniowego Producent

Bardziej szczegółowo

Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa

Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa dr Jarosław Kotowicz 02 października 2015r. Zadanie 1 ([1, Przykład

Bardziej szczegółowo

Funkcje IV. Wymagania egzaminacyjne:

Funkcje IV. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Badania Operacyjne Ćwiczenia nr 1 (Materiały) Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Wykład z modelowania matematycznego. Algorytm sympleks.

Wykład z modelowania matematycznego. Algorytm sympleks. Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Etap edukacyjny: IV, przedmiot: informatyka (poziom podstawowy )

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Etap edukacyjny: IV, przedmiot: informatyka (poziom podstawowy ) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Ekonometria Programowanie Liniowe. Robert Pietrzykowski

Ekonometria Programowanie Liniowe. Robert Pietrzykowski Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

Wstęp do logistyki. kierunek: Matematyka specjalność: Logistyka z zastosowaniem matematyki i informatyki. wykład. 1.1 Modelowanie

Wstęp do logistyki. kierunek: Matematyka specjalność: Logistyka z zastosowaniem matematyki i informatyki. wykład. 1.1 Modelowanie Wstęp do logistyki kierunek: Matematyka specjalność: Logistyka z zastosowaniem matematyki i informatyki wykład Wstęp Przedmiotem logistyki sa min procesy transportu i magazynowania surowców oraz wytworzonych

Bardziej szczegółowo

Dualność w programowaniu liniowym

Dualność w programowaniu liniowym 2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji

Bardziej szczegółowo

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3 ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1 1 TEST WSTĘPNY 1. (1p) Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb f(42), f(44), f(45), f(48) A. f(42) B. f(44) C. f(45)

Bardziej szczegółowo

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28 Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna

Bardziej szczegółowo

Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.

Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny. Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych

Wprowadzenie do badań operacyjnych Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto

Zad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)

Bardziej szczegółowo

KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1

KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE.   Strona 1 KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8]. Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34 Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Wykład 6. Programowanie liniowe

Wykład 6. Programowanie liniowe Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L. Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy

Bardziej szczegółowo

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe 1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie

Bardziej szczegółowo

Zadania optymalizacyjne

Zadania optymalizacyjne Zadania optymalizacyjne Zadania optymalizacyjne, to zadania, w których należy obliczyć, jakie warunki muszą być spełnione, aby pewna wielkość osiągała największą lub najmniejszą wartość Żeby żądane warunki

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Ostatnia aktualizacja: 30 stycznia 2015 r.

Ostatnia aktualizacja: 30 stycznia 2015 r. Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1 ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Określ zbiór wartości i przedziały monotoniczności funkcji.

Określ zbiór wartości i przedziały monotoniczności funkcji. Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej

Bardziej szczegółowo

c j x x

c j x x ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 2

Kształcenie w zakresie podstawowym. Klasa 2 Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo