Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
|
|
- Amelia Kowal
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
2 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
3 Przykład 1 : Transport Pewien wytwórca posiada centrale zbytu z Lublinie, Łodzi i Szczecinie. Centrale te posiadaja odpowiednio 20, 40 i 40 jednostek produktu. Punkty sprzedaży zamówiły nastepujace ilości jednostek produktu: Bydgoszcz - 15, Częstochowa - 20, Katowice - 25, Sopot - 15, Warszawa Koszt transportu jednostki (w zł) z każdej centrali zbytu do dowolnego punktu sprzedaży podaje następujaca tablica: Bydgoszcz Częstochowa Katowice Sopot Warszawa Lublin Łódź Szczecin Należy tak zaplanować dystrybucję produktu, by koszt transportu był minimalny. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
4 Przykład 2 : Technologia produkcji Dyrektor pewnego przedsiębiorstwa powinien obsadzić trzy stanowiska, które wymagaja różnych kwalifikacji i praktyki zawodowej, przy czym ma do dyspozycji trzech pracowników. Ze względu na różne ich kwalifikacje i doświadczenie zawodowe wartość (dla przedsiebiorstwa) każdego z tych pracowników zależy od stanowiska, na którym jest on zatrudniony. Poniższa tabela zawiera oceny wartości poszczególnych pracowników zatrudnionych na poszczególnych stanowiskach Stanowisko I Stanowisko II Stanowisko III Pracownik A Pracownik B Pracownik C Należy tak rozmieścić pracowników na rozważanych stanowiskach, by całkowita ich wartość dla przedsiebiorstwa była maksymalna. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
5 Przykład 3 : Dietetyka Zadaniem dietetyka jest opracowanie składu porannej owsianki tak, aby zawierała ona niezbedne dzienne zapotrzebowanie organizmu na określone składniki odżywcze i jednocześnie była możliwie najtańsza. Dietetyk ma dyspozycji płatki Corn Flakes i Nesquik. Śniadanie powinno zawierać co najmniej 1 mg witaminy B1, 12 mg zelaza i mieć wartość energetyczna równa 360 kcal. 100 g płatków Corn Flakes zawiera 1, 2 mg witaminy B1, 12 mg zelaza i ma wartość energetyczna równa 358 kcal, natomiast 100 g płatków Nesquik zawiera 1, 5 mg witaminy B1, 10 mg zelaza i ma wartość energetyczna równa 390 kcal. Ponadto 100 g płatków Corn Flakes kosztuje 32 gr, a 100 g płatków Nesquik - 36 gr. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
6 Zadanie programowania liniowego może być sformułowane w postaci: max(f(x 1, x 2,... x n )) F(x 1, x 2,... x n ) = c 1 x 1 + c 2 x c n x n funkcja celu a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2... a m1 x n + a a2 x n + + a mn x n b m ograniczenia x 1 0, x 2 0,..., x n 0 x 1, x 2,..., x n zmienne decyzyjne Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
7 lub w zapisie macierzowym: max ( (c 1 c 2... c n )(x 1 x 2... x n ) T ), a 11 a 12 a 1n a 21 a 22 a 2n... a m1 a m2 a mn x 1 x 2. x n b 1 b 2. b m, (x 1 x 2... x n ) (0, 0,... 0). Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
8 Podejmujac decyzje szukamy zawsze rozwiazania lub zbioru rozwiazań, które zmaksymalizuje użyteczność wybranego działania i zminimalizuje poniesione koszty. Programowanie liniowe to maksymalizacja lub minimalizacja liniowej funkcji wielu zmiennych, gdy zmienne te, lub niektóre z nich, podlegaja liniowym warunkom ograniczajacym w postaci równań lub nierówności. Nazwa "programowanie" wskazuje w tym kontekście na schemat działań. Maksymalizację funkcji f można zastapić minimalizacja funkcji f. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
9 Szczególne zastosowanie programowania liniowego: optymalny wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo w celu zmaksymalizowania zysku lub przychodu ze sprzedaży wybór technologii produkcji określenie skali czy intensywności dostępnych procesów technologicznych, aby wytworzyć określone ilości produktów przy możliwie najniższych kosztach optymalizacja składu mieszanin jakie ilości produktów żywnościowych należy zakupić, aby przy racjonalnym zaspokojeniu potrzeb organizmu obniżyć do minimum koszty wyżywienia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
10 Przykład Chcemy zmaksymalizować funkcję 50x + 100y przy ograniczeniach 1) 10x + 5y 2500, 2) 4x + 10y 200 3) x 0 i y 0. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
11 Przykład zagadnienie optymalizacji diety Wiemy, że 1 kg chleba zawiera 75 g białka i ma 2500 kalorii, a 1 kg sera zawiera 250 g białka i ma 5000 kalorii. Dzienna dieta powinna zawierać co najmniej 100 g białka i mieć 3000 kalorii. Należy znaleźć najtańsza dietę, złożona z chleba i sera, przy założeniu, że 1 kg chleba kosztuje 5 zł, a sera 20 zł. Niech x będzie poszukiwana liczba kilogramów chleba, a y sera. Mamy: min ( 5x + 20y ) cena 2500x y 3000 kaloryczność 75x + 250y 100 zawartość białka x 0, y 0 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
12 Inaczej: min ( 5x + 20y ) 2500x 5000y 75x 250y x 0, y lub równoważnie (warunki zapisane jako układ równań) min ( 5x + 20y ) 2500x 5000y + z 1 75x 250y + z 2 x 0, y 0, z 1 0, z 2 0 = 3000 = 100 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
13 Graficzne rozwiazanie zagadnień programowania liniowego Jeżeli w modelu zagadnienia programowania liniowego występuja dwie zmienne decyzyjne (x i y), to rozwiazanie takiego zadania możemy wyznaczyć graficznie. w układzie współrzędnych zaznaczamy zbiór punktów spełniajacych wszystkie warunki (ograniczenia). Otrzymujemy pewien wielobok, który jest zbiorem rozwiazań dopuszczalnych. Jeżeli zbiór rozwiazań dopuszczalnych jest ograniczony i domknięty to liniowa funkcja celu osiaga wartość najmniejsza i największa. Liniowa funkcja celu może przyjmować wartości ekstremalne albo w wierzchołkach albo na całych krawędziach. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
14 Schemat 1 zaznaczamy na rysunku warstwicę F(x, y) = 0 (prosta określajaca zerowa wartość funkcję celu). Należy znaleźć taki punkt ze zbioru rozwiazań dopuszczalnych, w którym prosta równoległa do F(x, y) = 0 jest najdalej odsunięta w górę. Funkcja celu F(x, y) osiaga tam wartość największa. warstwica F(x, y) = z max najbardziej wysunięta w górę, wyznacza największa wartość funkcji celu (z wykresu odczytujemy wierzchołek (x, y) i stad mamy osiagan a wartość największa) warstwica F(x, y) = z min najbardziej wysunięta w dół, wyznacza najmniejsza wartość funkcji celu (z wykresu odczytujemy wierzchołek (x, y) i stad mamy osiagan a wartość najmniejsza) Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
15 Schemat 2 (trochę prostszy) 1) wyznaczyć obszar rozwiazań dopuszczalnych 2) wyznaczamy wierzchołki tego obszaru 3) wyznaczamy wartość funkcji celu we wszystkich wierzchołkach 4) Jeżeli obszar dopuszczalnych decyzji jest ograniczony i domknięty, to spośród tych wartości wybieramy wartość największa i najmniejsza. 5) Jeżeli obszar dopuszczalnych decyzji nie jest ograniczony i domknięty, to maksimum albo minimum nie istnieje. 6) Jeżeli ta sama wartość ekstremalna jest przyjmowana w kilku wierzchołkach, to analizujemy rysunek, czy to ekstremum nie jest osiagane na całym boku. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
16 Przykład 1 Znaleźć najmniejsza i największa wartość funkcji F(x, y) = 50x + 100y przy warunkach 10x + 5y 2500, 4x + 10y 200 x 0, y 0. y 2x y 2 5 x + 20, x 0, y 0 Rysunek: zbiór dopuszczalnych decyzji Rysunek: zbiór dopuszczalnych decyzji (w przybliżeniu ) Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
17 wierzchołki (0, 0), (50, 0), (0, 20) Sposób 1 F(x, y) = 0 50x + 100y = 0 y = 0.5x Rysunek: poziomica F (x, y) = 0 i jej przesunięcia przechodzace przez wierzchołki Widać że najwyżej w górę przesunięta jest poziomica przechodzaca przez wierzchołek (50, 0), zatem F max = F(50, 0) = = Widać że najniżej wysunięta jest poziomica przechodzaca przez wierzchołek (0, 0), zatem F min = F(0, 0) = = 0. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
18 Sposób 2: x y F(x, y) = 50x + 100y min max F max = F(50, 0) = 2500 F min = F(0, 0) = 0 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
19 Przykład 2 Znaleźć najmniejsza i największa wartość funkcji F(x, y) = 5x + 20y przy warunkach 2500x 5000y 75x 250y x 0, y y 0.5x y 0.3x + 0.4, x 0, y 0 Rysunek: zbiór dopuszczalnych decyzji Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
20 wierzchołki :(0, 0.6), ( 4 3, 0), (1, 0.1) Sposób 1 Poziomica F(x, y) = 0 5x + 20y = 0 y = 1 4 x ponieważ 0.25 > 0.3 (porównujac współczynniki kierunkowe zerowej poziomicy i prostych opisujacych brzeg), to przesuwajac poziomicę y = 1 4x w górę, pierwszym punktem, w którym dotknie ona zbioru dopuszczalnych decyzji jest wierzchołek ( 4 3, 0) F max nie jest osiagana, bo obszar dopuszczalnych decyzji jest nieograniczony F min = F( 4 3, 0) = 20 3 Sposób 2: x y F(x, y) = 5x + 20y min F max nie istnieje, bo obszar nieograniczony F min = F( 4 3, 0) = 20 3 Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
21 Przykład 3 Znaleźć największa i najmniejsza wartość funkcji F(x, y) = 3x + y przy warunkach 4x y 4 3x + y 6 x y 6 x 0, y 0 y 4x 4 y 3x + 6, y x 6 x 0, y 0 Rysunek: zbiór dopuszczalnych decyzji Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
22 zbiór rozwiazań dopuszczalnych jest nieograniczony wierzchołki : (2, 0), (6, 0), (1 3 7, ) Poziomica F(x, y) = 0 3x + y = 0 y = 3x ponieważ poziomica y = 3x jest równoległa do prostej y = 3x + 6, to z min = 6 dla wszystkich punktów na prostej y = 3x + 6 dla x ( 10 7, 2) z max nie jest osiagana Sposób 2: x y F(x, y) = 3x + y min = 6 min F max nie istnieje, bo obszar nieograniczony F min = 6 na całym odcinku y = 3x + 6 dla x ( 10 7, 2), bo prosta y = 3x + 6 jest równoległa do poziomicy y = 3x. Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
23 Dziękuję za uwagę! Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wydział Matematyki Programowanie liniowe Ćwiczenia. Zestaw 1. Modelowanie zadań programowania liniowego.
Wydział Matematyki Programowanie liniowe Ćwiczenia Zestaw. Modelowanie zadań programowania liniowego. Zadania dotyczące zagadnienia planowania produkcji Zadanie.. Zapisać następujące zadanie w postaci
Bardziej szczegółowoZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Bardziej szczegółowoDefinicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Bardziej szczegółowo4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Bardziej szczegółowoZadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 2 Programowanie liniowe Metoda geometryczna Plan zajęć Programowanie liniowe metoda geometryczna Przykład 1 Zbiór rozwiązań dopuszczalnych Zamknięty zbiór rozwiązań dopuszczalnych
Bardziej szczegółowo1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Bardziej szczegółowoEkonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Bardziej szczegółowoProgramowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowoProgramowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowoElementy modelowania matematycznego
Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Bardziej szczegółowoĆwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
Bardziej szczegółowoProgramowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Bardziej szczegółowoBadania operacyjne. 1 Programowanie liniowe. kierunek Informatyka, studia II stopnia ćwiczenia. 1.1 Modelowanie
Badania operacyjne kierunek Informatyka studia II stopnia ćwiczenia Programowanie liniowe Modelowanie Zadanie Producent odzieży powinien określić ile kurtek i płaszczy należy wyprodukować tak aby zysk
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Bardziej szczegółowoProgramowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Bardziej szczegółowoBadania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowoProgramowanie liniowe w logistyce
Programowanie liniowe w logistyce kierunek Informatyka, studia I stopnia ćwiczenia Programowanie liniowe Modelowanie Zadanie Zapisać nast epujace zadanie w postaci zadania programowania liniowego Producent
Bardziej szczegółowoĆwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa
Ćwiczenia pierwsze Badania operacyjne (budowanie modelu matematycznego) kierunek: matematyka, studia I specjalność: matematyka finansowa dr Jarosław Kotowicz 02 października 2015r. Zadanie 1 ([1, Przykład
Bardziej szczegółowoFunkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 1 (Materiały)
Wprowadzenie Badania operacyjne (BO) to stosunkowo młoda dyscyplina naukowa, która powstała w czasie II Wojny Światowej, w związku z utworzeniem przy niektórych sztabach sił zbrojnych specjalnych grup
Bardziej szczegółowoZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Bardziej szczegółowoProgramowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Bardziej szczegółowoWykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Bardziej szczegółowoStandardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Bardziej szczegółowoSCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Etap edukacyjny: IV, przedmiot: informatyka (poziom podstawowy )
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
Bardziej szczegółowoEkonometria Programowanie Liniowe. Robert Pietrzykowski
Ekonometria Programowanie Liniowe Robert Pietrzykowski ZADANIE: Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. Ograniczeniem w procesie produkcji jest czas pracy trzech maszyn: M1, M2 i M3. W tablicy
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Bardziej szczegółowoFUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Bardziej szczegółowoWstęp do logistyki. kierunek: Matematyka specjalność: Logistyka z zastosowaniem matematyki i informatyki. wykład. 1.1 Modelowanie
Wstęp do logistyki kierunek: Matematyka specjalność: Logistyka z zastosowaniem matematyki i informatyki wykład Wstęp Przedmiotem logistyki sa min procesy transportu i magazynowania surowców oraz wytworzonych
Bardziej szczegółowoDualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Bardziej szczegółowoII. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Bardziej szczegółowoFUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.
FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji
Bardziej szczegółowoZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1
1 TEST WSTĘPNY 1. (1p) Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb f(42), f(44), f(45), f(48) A. f(42) B. f(44) C. f(45)
Bardziej szczegółowoWykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28
Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna
Bardziej szczegółowoBadania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Bardziej szczegółowoMetoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Bardziej szczegółowoFUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Bardziej szczegółowoLekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
Bardziej szczegółowoBadania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Bardziej szczegółowoOptymalizacja procesów technologicznych przy zastosowaniu programowania liniowego
Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych
Bardziej szczegółowoEkstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
Bardziej szczegółowoWprowadzenie do badań operacyjnych
Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie
Bardziej szczegółowoIX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
Bardziej szczegółowoFUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Bardziej szczegółowoZad.1. Microsoft Excel - Raport wyników Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto pocz tkowa Warto cowa Komórka Nazwa Warto
Zad.1. Przedsiębiorstwo może wytwarzać trzy typy maszyn: tokarki, piły, frezarki zużywając dwa ograniczone zasoby: energię elektryczną i siłę roboczą w następujących proporcjach: energia (KWH / jedn.)
Bardziej szczegółowoKURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Bardziej szczegółowoNa rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
Bardziej szczegółowoDocument: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoDodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?
Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak
Bardziej szczegółowoWykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Bardziej szczegółowoNAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x
Bardziej szczegółowoSpis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna
Bardziej szczegółowoWYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoWykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoRównania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoExcel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Bardziej szczegółowoRównania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
Bardziej szczegółowoAnaliza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Bardziej szczegółowoĆwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bardziej szczegółowoMetody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt
Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku
Bardziej szczegółowoEkonometria - ćwiczenia 11
Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy
Bardziej szczegółowoFUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe
1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie
Bardziej szczegółowoZadania optymalizacyjne
Zadania optymalizacyjne Zadania optymalizacyjne, to zadania, w których należy obliczyć, jakie warunki muszą być spełnione, aby pewna wielkość osiągała największą lub najmniejszą wartość Żeby żądane warunki
Bardziej szczegółowoSchemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Bardziej szczegółowoM10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Bardziej szczegółowoOstatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Bardziej szczegółowoALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1
ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie
Bardziej szczegółowo9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Bardziej szczegółowoZadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Bardziej szczegółowoOkreśl zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
Bardziej szczegółowoc j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
Bardziej szczegółowoZad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoWymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej
Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowo