Sieć (graf skierowany)
|
|
- Wiktoria Wiśniewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., }
2 Ścieżki i cykle Sieci Ciag niepowtarzajacych się wierzchołków w sieci G = (V, A), połaczonych łukami, nazywamy ścieżka w G. Cyklem nazywamy ciag niepowtarzajacych się wierzchołków połaczonych łukami, za wyjatkiem pierwszego i ostatniego, które sa takie same. Jeżeli wszystkie łuki na ścieżce (cyklu) maja taka sama orientację, to mówimy o ścieżce skierowanej (cyklu skierowanym). Sieć jest spójna jeżeli istnieje ścieżka między każda para wierzchołków w tej sieci. Ścieżka skierowana A,C,F i cykl skierowany B,E,D,B. Ścieżka nieskierowana jest np. A, D, E a cyklem nieskierowanym A, D, C, A.
3 Sieć acykliczna Sieci Sieć nazywamy acykliczna jeżeli nie zawiera żadnego cyklu skierowanego. W takiej sieci można ponumerować wierzchołki w ten sposób, że dla każdego łuku (i, j) A zachodzi i < j. Jest to tzw. uporzadkowanie topologiczne wierzchołków.
4 Sieci Drzewo rozpinajace Drzewem rozpinajacym nazywamy spójna sieć nie zawierajac a żadnego cyklu. Każde drzewo rozpinajace dla sieci G = (V, A) ma dokładnie V 1 łuków. Dodanie nowego łuku do drzewa rozpinajacego powoduje powstanie dokładnie jednego cyklu (skierowanego lub nie)
5 Sieci (przykład) Fabryka, ulokowana w mieście 1, ma wysłać 5 jednostek towaru do dwóch sklepów. Sklep 1 znajduje się w mieście 4 i zamówił 2 jednostki towaru a sklep 2 znajduje się w mieście 5 i zamówił 3 jednostki towaru. Mapa połaczeń między fabryka a sklepami jest zadana w postaci sieci G = (V, A). Każdy łuk (i, j) A ma dwa parametry: koszt c ij transportu 1 sztuki towaru po (i, j) oraz pojemność u ij oznaczajac a maksymalna liczbę jednostek towaru, jaka może być przewożona po (i, j). Jaki jest najtańszy plan transportu towaru z fabryki do sklepów?
6 Sieci Model liniowy i rozwiazanie min z = 5x x x x x x x x 45 x 12 + x 13 x 31 = 5 x 24 + x 23 x 12 = 0 x 34 + x 35 x 23 x 13 = 0 x 45 x 24 x 34 = 2 x 35 x 45 = 3 0 x 12 9, 0 x 13 4, 0 x 31 3, 0 x 23 6, 0 x x 34 4, 0 x 35 9, 0 x 45 7
7 Sieci Ogólne sformułowanie problemu Zadana jest sieć G = (V, A). Dla każdego łuku (i, j) A sa zadane koszt c ij i pojemność u ij 0. Dla każdego wierzchołka i V zadana jest liczba b i oznaczajaca podaż/popyt w tym wierzchołku. Jeżeli b i > 0, to i jest dostawca; jeżeli b i < 0, to i jest odbiorca; jeżeli b i = 0, to i jest wierzchołkiem pośrednim. Niech x ij 0 będzie zmienna oznaczajac a przepływ po łuku (i, j) A. min z = (i,j) A c ij x ij {j:(i,j) A} x ij {j:(j,i) A} x ji = b i for all i N 0 x ij u ij for all (i, j) A Zakładamy, że i V b i = 0, czyli problem jest zbilansowany.
8 Sieci Planowanie produkcji/zapasów Fabryka wytwarza pewien produkt i chce zaspokoić popyt d j w każdym z K okresów j = 1, 2,..., K. Zdolność produkcyjna w j-tym okresie wynosi a j, jednostkowy koszt produkcji w j-tym okresie wynosi c j a jednostkowy koszt magazynowania w j-tym okresie wynosi m j. Zakładamy, że do I jednostek wyrobu może być przechowywana w magazynie. Fabryka chce wyznaczyć najtańszy plan produkcji i magazynowania produktu w ciagu K okresów.
9 Planowanie lotów Sieci Mała firma używa samolotu, który może zabrać p pasażerów. Samolot odwiedza miasta w kolejności 1, 2,..., n. Samolot może zabrać pasażerów w każdym mieście i wysadzić ich w dowolnym z kolejnych miast. Niech b ij oznacza liczbę pasażerów oczekujacych w mieście i na lot do miasta j. Niech f ij będzie opłata za przelot od i do j. Ilu pasażerów powinien zabrać samolot pomiędzy każda para miast aby zmaksymalizować przychód?
10 Planowanie lotów Sieci Sieć dla 4 miast:
11 Sieć rezydualna Sieci Niech x będzie przepływem w sieci G = (V, A). Sieć rezydualna G(x) ma takie same wierzchołki jak G a jej łuki definiujemy następujaco. 1 Dla każdego łuku (i, j) A tworzymy dwa łuki: (i, j) o pojemności r ij = u ij x ij i koszcie c ij (j, i) o pojemności r ji = x ij i kozcie c ij 2 Usuwamy wszystkie łuki o pojemności 0.
12 Sieć rezydualna Sieci Jeżeli sieć rezydualna G(x) zawiera cykl skierowany o ujemnym koszcie (ujemny cykl), to można wyznaczyć tańszy dopuszczalny przepływ poprzez przemieszczenie dodatniego przepływu po tym cyklu.
13 Sieci Algorytm kasowania ujemnych cykli Twierdzenie. Dopuszczalny przepływ x w sieci G jest optymalny wtedy i tylko wtedy gdy sieć rezydualna G(x) nie zawiera ujemnego cyklu. 1: Znajdź dopuszczalny przepływ x w sieci 2: while G(x) zawiera ujemny cykl do 3: Wyznacz ujemny cykl W w G(x) 4: δ := min{r ij : (i, j) W } 5: Przemieść δ jednostek przepływu po W i zaktualizuj G(x) 6: end while
14 Przykład Sieci Pierwszy dopuszczalny przepływ. Sieć rezydualna zawiera ujemny cykl. Można wyznaczyć tańszy przepływ przemieszczajac 2 jednostki przepływu po tym cyklu.
15 Przykład Sieci Sieć rezydualna zawiera ujemny cykl. Można wyznaczyć tańszy przepływ przemieszczajac 1 jednostkę przepływu po tym cyklu.
16 Przykład Sieci Sieć rezydualna nie zawiera ujemnego cyklu. Przepływ jest optymalny.
17 Sieci Wyznaczania dopuszczalnego przepływu Dodajemy wierzchołek s i łaczymy go z dostawcami i odbiorcami dodatkowymi łukami. Koszty i pojemności dodatkowych łuków wynosza (w praktyce jest to duża liczba M). Jeżeli w optymalnym rozwiazaniu na którymś z dodatkowych łuków istnieje dodatni przepływ to wyjściowy problem jest sprzeczny.
18 Sieci Rozwiazanie całkowitoliczbowe Jeżeli pojemności łuków, podaże oraz popyty wierzchołków sa liczbami całkowitymi, to istnieje optymalne rozwiazanie (przepływ) całkowitoliczbowe. Algorytm kasowania ujemnych cykli zwraca takie rozwiazanie.
Sieć (graf skierowany)
Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B),(A, D),(A, C),(B, C),...,} Ścieżki i cykle Ciag wierzchołków
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoSortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Bardziej szczegółowoAlgorytmiczna teoria grafów Przepływy w sieciach.
Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoBADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoBadania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Bardziej szczegółowoDigraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Bardziej szczegółowoMATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Bardziej szczegółowozadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w
Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie
Bardziej szczegółowoA. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoModelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
Bardziej szczegółowoWykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Bardziej szczegółowoDrzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Bardziej szczegółowoProgramowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Bardziej szczegółowoPrzykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Bardziej szczegółowoZadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Bardziej szczegółowoZnajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Bardziej szczegółowoWYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Bardziej szczegółowoZagadnienie najkrótszej drogi w sieci
L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Bardziej szczegółowoRozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Bardziej szczegółowoZofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Bardziej szczegółowoBADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowoBadania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Bardziej szczegółowoBADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Bardziej szczegółowoZAGADNIENIA TRANSPORTOWE
ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych
Bardziej szczegółowo[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.
Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe
Bardziej szczegółowoZagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Bardziej szczegółowoAlgorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Bardziej szczegółowoG. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
Bardziej szczegółowoPlanowanie przedsięwzięć
K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania
Bardziej szczegółowoE: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
Bardziej szczegółowoWykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Bardziej szczegółowoAlgorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Bardziej szczegółowoMetody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Bardziej szczegółowoMetoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Bardziej szczegółowoBadania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.
Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin
Bardziej szczegółowoAlgorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Bardziej szczegółowoWieloetapowe zagadnienia transportowe
Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych
Bardziej szczegółowocelu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Bardziej szczegółowoZagadnienia optymalizacji na grafach
dr inż. Adam Kasperski, dr M. Kulej BO- Optymalizacja na sieciach 1 Zagadnienia optymalizacji na grafach Podstawowe pojęcia z teorii grafów i sieci Graf nieskierowany(symetryczny) G = (V, E) składa się
Bardziej szczegółowoWstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoDWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku
DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)
Bardziej szczegółowoProgramowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
Bardziej szczegółowoTEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 5: Sieci, drogi ekstremalne w sieciach, analiza złożonych przedsięwzięć (CPM i PERT) dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl
Bardziej szczegółowoProgramowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Bardziej szczegółowoGraf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Bardziej szczegółowoHarmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowoPROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
Bardziej szczegółowoEGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Bardziej szczegółowoZagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Bardziej szczegółowoBADANIA OPERACYJNE. dr Adam Sojda Pokój A405
BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Bardziej szczegółowo07 Model planowania sieci dostaw 2Po_1Pr_KT Zastosowanie programowania liniowego
r Tytuł: Autor: 07 Model planowania sieci dostaw 2o_1r_T Zastosowanie programowania liniowego iotr SAWC Zakład Systemów Transportowych WT piotr.sawicki@put.poznan.pl piotr.sawicki.pracownik.put.poznan.pl
Bardziej szczegółowoMarek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1
Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i
Bardziej szczegółowo) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n
PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;
Bardziej szczegółowoBADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
Bardziej szczegółowoTemat 9. Zabłocone miasto Minimalne drzewa rozpinające
Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowoZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
Bardziej szczegółowoProgramowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Bardziej szczegółowoProgramowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53
Bardziej szczegółowoTEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa
TEORIA GRAFÓW I SIECI - ROZDZIAŁIV Drzewa Drzewem lub drzewem wolnym nazywamy dowolny graf spójny i acykliczny. Drzewa Ćwiczenie 1. Narysować wszystkie, z dokłado sci a do izomorfizmu, drzewa o 1, 2, 3,
Bardziej szczegółowoProgramowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Bardziej szczegółowoŚcieżki w grafach. Grafy acykliczne i spójne
TEORIA GRAFÓW I SIECI - ROZDZIAL II Ścieżki w grafach. Grafy acykliczne i spójne Ścieżka lub droga w grafie [digrafie] G nazywamy dowolny ciag d = (a 0, k 1, a 1,..., k n, a n ), gdzie n N {0}, a i V G,
Bardziej szczegółowoZagadnienie transportowe. Hurtownia Zapotrzebowanie (w tonach) 1 100 2 160 3 350 4 100 5 220
Zagadnienie transportowe Firma produkująca papier kserograficzny posiada 4 wytwórnie i 5 hurtowni, do których dostarczany jest papier. Każda z fabryk wytwarza określoną liczbę ton papieru na miesiąc, i
Bardziej szczegółowoPrzykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Bardziej szczegółowoDeterministyczne Modele Badań Operacyjnych Semestr letni 2015 Praca domowa II
Deterministyczne Modele Badań Operacyjnych Semestr letni 2015 Praca domowa II 17/04/2015 1 Polecenie Zestaw składa się z trzech zadań, za każde z nich można zdobyć 10p. Rozwiązania do zadań należy wysłać
Bardziej szczegółowoTEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoTeoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Bardziej szczegółowoProcesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Bardziej szczegółowoMetody określania wielkości partii cz.1. Zajęcia Nr 6
Metody określania wielkości partii cz.1 Zajęcia Nr 6 Metody Metody statyczne - Wyliczane jednorazowo; - Nie ulegają zmianom w czasie; Rodzaje metod statycznych: ekonomicznej wielkości zamówienia (dostaw),
Bardziej szczegółowoWykład 7. Algorytmy grafowe
Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst
Bardziej szczegółowoProgramowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Bardziej szczegółowoFilogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami.
181 Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 3. D T(D) poprzez algorytm łączenia sąsiadów 182 D D* : macierz łącząca sąsiadów n Niech TotDist i = k=1 D i,k Definiujemy
Bardziej szczegółowoModele całkowitoliczbowe zagadnienia komiwojażera (TSP)
& Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce
Bardziej szczegółowoGrafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow
9: Digrafy (grafy skierowane) Spis zagadnień Digrafy Porządki częściowe Turnieje Przykłady: głosowanie większościowe, ścieżka krytyczna Digraf (graf skierowany) Digraf to równoważny termin z terminem graf
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Bardziej szczegółowoGrafem skierowanym. Typowe zastosowania grafów skierowanych obejmują wiele dziedzin:
Grafem skierowanym D (inaczej digrafem) nazywamy parę(v, A), gdzie V jest skończonym zbiorem wierzchołków, A jest zbiorem par uporządkowanych(u, v) o elementach ze zbioru V. Elementy zbioru A nazywamy
Bardziej szczegółowoĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI
J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał
Bardziej szczegółowoMinimalne drzewa rozpinające
KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam
Bardziej szczegółowo