A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1
|
|
- Wanda Nowicka
- 8 lat temu
- Przeglądów:
Transkrypt
1 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie dualne, interpretacje i związki jakie zachodzą między tymi zagadnieniami. Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: maxz = c x + c 2 x c n x n a x + a 2 x a n x n b a 2 x + a 22 x a 2n x n b 2... a m x + a m2 x a mn x n b m x j 0 (j =, 2,...,n) Zagadnienie dualne definiuje się następująco: min w = b y + b 2 y b m y m a y + a 2 y a m y m c a 2 y + a 22 y a m2 y m c 2... a n y + a 2n y a mn y m c n y i 0 (i =, 2,...,m) Budowę zagadnienia dualnego ilustruje tablica. Tab..: Budowa zagadniena dualnego maxz min w (x 0) (x 2 0) (x n 0) x x 2 x n (y 0) y a a 2 a n b (y 2 0) y 2 a 2 a 22 a 2n b (y m 0) y m a m a m2 a mn b m c c 2 c n Przykład.. Zakład meblowy STYL produkuje stoły i fotele. Wyprodukowany stół przynosi 60 zł. zysku a fotel 200 zł. Produkcja stołów i foteli limitowana jest godzinami pracy, ilością posiadanego drewna i powierzchnią magazynowania. Zużycie tych zasobów oraz ich dzienne limity są następujace:
2 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 2 Zużycie zasobów Zasoby Stół Fotel Limit dzienny(godz.) Praca(godz.) Drewno(m 3 ) Powierz.(m 2 ) Jaki powinien być dzienny plan produkcji maksymalizujący zysk? Model prymalny: Model dualny max z = 60x + 200x 2 2x + 4x x + 8x x + 2x x, x 2 0. min w = 40y + 26y y 3 2y + 8y y y + 8y 2 + 2y y, y 2, y 3 0. Ekonomiczna interpretacja zagadnienia dualnego. Załóżmy, że w zakładzie STYL pojawia się przedsiębiorca, który chce nabyć wszystkie zasoby zakładu,tj.40godz.pracy,20 m 3 drewnai240 m 2 powierzchimagazynowej.musi zatem ustalić cenę każdej jednostki zasobu, którą gotów byłby za nie zapłacić. Niech y, y 2 i y 3 będziecenąodpowiednioza:godz.pracy,metrsześciennydrewna i metr kwadratowy powierzchni magazynowej. Pokażemy, że te ceny można wyznaczyć rozwiązując zagadnienia dualne. Całkowity koszt zasobów wyniesie w tychcenach 40y + 26y y 3 aponieważprzedsiębiorcachceminimalizować koszty zakupu zasobów to chce wyznaczyć: min w = 40y + 26y y 3. Jakie ograniczenia musi uwzględnić przedsiębiorca określając ceny? Ceny musi ustalić na takim poziomie aby firma STYL zechciała mu sprzedać swoje zasoby. Na przykład za zasoby, które zakład zużywa do wyprodukowania stołu tj. 2 godz.pracy,8m 3 drewnai24m 2 powierzchnimagazynowejpowinienzapłacić co najmniej 60 zł. gdyż zakład produkując ten stół osiągnie zysk 60 zł. Zatem oferując 2y + 8y y 3 zazasobydoprodukcjistołumusitakustalićceny y,y 2,y 3 tak,aby 2y + 8y y 3 60.
3 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 3 Analogiczne rozumowanie dla fotela daje ograniczenie: 4y + 8y 2 + 2y Musząteżbyćdodaneograniczeniananieujemnośćtychcentj. y,y 2,y 3 0,co razem daje model dualny. Budowę zagadnienia dualnego dla dowolnej postaci zagadnienia programowania liniowego podamy na przykładzie. maxz = 2x + x 2 min w = 2y + 3y 2 + y 3 x + x 2 = 2 y -dowolna 2x x 2 3 y 2 0 x x 2 y 3 0 x 0 y + 2y 2 + y 3 2 x 2 dowolna y y 2 y 3 =. Zauważmy, że każdemu ograniczeniu w modelu pierwotnym odpowiada zmienna dualna a każdemu warunkowi na zmienną odpowiada ograniczenie w zagadnieniu dualnym. Ograniczeniu odpowiada warunek na nieujemność zmiennej dualnej odpowiadającej temu ograniczeniu, ograniczeniu w postaci równości odpowiada zmienna dualna o dowolnym znaku a ograniczeniu ujemna zmienna dualna. Warunkowi na nieujemność zmiennej w zagadnieniu pierwotnym odpowiada w zagadnieniu dualnym ograniczenie natomiast zmiennej dowolnej odpowiada w zagadnieniu dualnym ograniczenie w postaci równości. Lewą stronę ograniczenia j-tego w zagadnieniu dualnym otrzymujemy przemnażając(skalarnie) j-tą kolumnę macierzy ograniczeń zagadnienia pierwotnego przez wektor zmiennychdualnychaprawąjestwspółczynnikstojącyprzyzmiennej x j (tj. c j ) w funkcji celu zagadnienia pierwotnego. Funkcją celu zagadnienia dualnego jest iloczyn(skalarny) wektora prawych stron ograniczeń zagadnienia pierwotnego przez wektor zmiennych dualnych. Jeśli funkcja celu zgadnieia pierwotnego jest maksymalizowana, to w zagadnieniu dualnym mamy minimalizacje funkcji celu. Podstawowe związki pomiędzy zagadnieniami pierwotnym i dualnym Twierdzenie.. Zagadnienie dualne do dualnego jest zagadnieniem pierwotnym. Twierdzenie.2. Wartość funkcji celu z dla dowolnego rozwiązania dopuszczalnego zagadnienia pierwotnego jest nie większa niż wartośc funkcji celu w dla dowolnego rozwiązania zagadnienia dualnego. Z tego twierdzenia mamy dwa wnioski: Wniosek..Jeśli (x,x 2,...,x n )i(y,y 2,...,y m )sąrozwiązaniamidopuszczalnymiodpowiedniozagadnieniapierwotnegoidualnegotakimi,że z = c x + c 2 x c n x n = b y + b 2 y b m y m = w,tosątorozwiązaniaoptymalne tych zagadnień.
4 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 4 Wniosek.2. Jeśli jedno z zagadnień(pierwotne lub dualne) nie ma skończonego rozwiązania optymalnego(funkcja celu jest nieograniczona w zbiorze rozwiązań dopuszczalnych), to drugie zagadnienie nie ma rozwiązań dopuszczalnych(układ ograniczeń jest sprzeczny). Natomiast jeśli jedno z zagadnień nie ma rozwiązania dopuszczalnego to jego zagadnienie dualne może albo nie mieć rozwiązania dopuszczalnego albo nie mieć skończonego rozwiązania optymalnego. Twierdzenie.3. Jeśli jedno z zagadnień(pierwotne lub dualne) ma rozwiązanie optymalne, to oba zagadnienia mają rozwiązania optymalne i wartości funkcji celu tych zagadnień dla rozwiązań optymalnych są sobie równe. Rozwiązując metodą sympleks zagadnienia pierwotne z optymalnej tablicy można odczytać rozwiązanie optymalne zagadnienia dualnego. Rozważmy model liniowy dla firmy STYL. Optymalną tablicą sympleksową jest tablica.2: Zmiennymibazowymirozwiązaniaoptymalnegosą ZB = {x 2,x,s 3 }natomiast bazątegorozwiązaniajest B = Tab..2: Optymalna tablica sympleksowa s s 2 s 3 x x x x s z Macierzodwrotna B = znajdujesięwkolumnach s,s 2,s 3 tablicyoptymalnej.rozwiązanieoptymalne zagadnieniadualnego (y,y 2,y 3 )możnawyznaczyćkorzystajączmacierzy B następująco: (y,y 2,y 3 ) = c B B = (200, 60, 0) = (20, , 0) gdziewektor c B zawierawspółczynnikifunkcjiceluodpowiadającezmiennymbazowym.wtablicyoptymalnejtorozwiązanieznajdujesięwkolumnach s,s 2,s 3 wiersza wskażników optymalności. Jeśli zagadnienie pierwotne jest w dowolnej postaci, to rozwiązanie optymalne odczytujemy z optymalnej tablicy sympleksowej nastepująco: Optymalnawartośćzmiennejdualnej y i odpowiadającejograniczeniu równasięwspółczynnikowikolumny s i wierszawskażnikówoptymalnośći.
5 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 5 Optymalnawartośćzmiennejdualnej y i odpowiadającejograniczeniu równasię-(współczynnikkolumy e i wierszawskażnikówoptymalności). Optymalnawartośćzmiennejdualnej y i odpowiadającejograniczeniu = równasię(współczynnikowikolumny a i wierszawskażnikówoptymalności)- M. Zmienna e i jestzmienną,którąodejmujemyodlewejstronyograniczeniapostaci,abyzamienićjenarównanie,azmienna a i jestzmiennąsztucznąwmmetodzie, którą dodajemy do lewej strony ograniczenia w postaci równania. Dla ilustracji rozważmy następujące zagadnienie: Dodając odpowiednie zmienne mamy: maxz = 3x + 2x 2 + 5x 5 x + 3x 2 + 2x 3 5 2x 2 x 3 5 2x + x 2 5x 3 = 0 x,x 2,x 3 0. max z = 3x + 2x 2 + 5x 5 Ma 2 Ma 3 x + 3x 2 + 2x 3 + s = 5 2x 2 x 3 e 2 + a 2 = 5 2x + x 2 5x 3 + a 3 = 0 x,x 2,x 3,s,a 2,a 3 0. Rozwiązując to zagadnienie M-metodą otrzymujemy następującą optymalną tablicę.3: Tab..3: M-metoda, ostatnia tablica x x 2 x 3 s e 2 a 2 a x x x z M 58 M
6 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 6 Zagadnienie dualne ma postać: min w = 5y + 5y 2 + 0y 3 y + 2y 3 3 3y + 2y 2 + y 3 2 2y y 2 5y 3 5 y 0,y 2 0,y 3 dowolna. Odczytując rozwiązanie optymalne zagadnienia dualnego z optymalnej tablicy sympleksmamy:ograniczeniepierwszejestnierównością to y = 5(współ- czynnikoptymalnościwkolumnie s ),drugieograniczeniejestnierównością to y 2 = 58(-wspólczynnikoptymalnościwkolumnie e 2),trzecieograniczenie jestrównościązatem y 3 = 9 (współczynnikoptymalnościwkolumnie a 3-M). Optymalnawartośćrozwiązaniadualnegowynosi w = ( 58)+0 9 = 565 i jest równa optymalnej wartości funkcji celu zagadnienia pierwotnego.
ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
Dualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby
Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
4. PROGRAMOWANIE LINIOWE
4. PROGRAMOWANIE LINIOWE Programowanie liniowe jest jednym z działów badań operacyjnych. Celem badań operacyjnych jest pomoc w podejmowaniu optymalnych z pewnego punktu widzenia decyzji. Etapy rozwiązywania
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie
Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ
1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1
A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:
Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te
c j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
Wykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Badania operacyjne. 1 Programowanie liniowe. kierunek Informatyka, studia II stopnia ćwiczenia. 1.1 Modelowanie
Badania operacyjne kierunek Informatyka studia II stopnia ćwiczenia Programowanie liniowe Modelowanie Zadanie Producent odzieży powinien określić ile kurtek i płaszczy należy wyprodukować tak aby zysk
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Elementy modelowania matematycznego
Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
Wykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa
Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego
6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego Analiza wrażliwości est studium analizy wpływu zmian wartości różnych parametrów modelu PL na rozwiązanie optymalne. Na optymalne
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Programowanie liniowe
Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Algebra Boole a i jej zastosowania
lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Badania Operacyjne Ćwiczenia nr 4 (Materiały)
Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Równania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Laboratorium Metod Optymalizacji
Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Optymalizacja liniowa w liczbach całkowitych (PLC)
* ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału
Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2.
Przykład Elementy analizy wrażliwości Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Dla wyrobu 2 czasy te wynosza
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
Równania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Modele liniowe.......................... 5 1.1.
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji
Wybrane elementy badań operacyjnych
Wybrane elementy badań operacyjnych 1 Przykład 1. GWOŹDZIE. Pewna fabryczka może produkować dwa gatunki gwoździ II i I. Do wyprodukowania tony gwoździ II gatunku potrzeba 1,2 tony stali oraz 1 roboczogodzinę
1.UKŁADY RÓWNAŃ LINIOWYCH
UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej