V.4 Ruch w polach sił zachowawczych
|
|
- Anna Głowacka
- 8 lat temu
- Przeglądów:
Transkrypt
1 r. akad. 5/ 6 V.4 Ruch w polach sił zachowawczych. Ruch cząstki w potencjale jednowyiarowy. Ruch w polu siły centralnej. Wzór Bineta 3. Przykład: całkowanie wzoru Bineta dla siły /r Dodatek: całkowanie wzoru Bineta przez kwadratury Jan Królikowski Fizyka IBC
2 . Ruch w potencjale jednowyiarowy Zasada zachowania energii w przypadku jednowyiarowy: x V(x) E + = r. akad. 5/ 6 Możey odwikłać wyrażenie na prędkość i scałkować po czasie: x x x(t) x = = ( ) E V ( ) E V dx ( ) E V x t t = dt = t t Jest to prostsze niż całkowanie r. ruchu Jan Królikowski Fizyka IBC
3 r. akad. 5/ 6. Ruch w polu siły centralnej Będziey korzystali z dwóch praw zachowania: energii i oentu pędu. Ruch jest płaski; wprowadziy współrzędne biegunowe r, φ w płaszczyźnie ruchu. Prawa zachowania: ( r + r φ ) + V ( r ) = E = r φ Prawo zachowania oentu pędu pozwoli na wyeliinowanie prędkości kątowej: φ = r 4 Jan Królikowski Fizyka IBC 3
4 r. akad. 5/ 6 Ruch w polu siły centralnej cd. Wyrażenie na energię ożey przekształcić do postaci: r + = ( E V( r) ) r r = E V( r) r dr = t t E V( r) r Znalezienie ruchu r=r(t) sprowadza się w ty przypadku do policzenia całki i odwikłania zależności od czasu. Zależność φ=φ( t) Jan Królikowski Fizyka IBC 4
5 r. akad. 5/ 6 Ruch w polu siły centralnej cd. Zależność kąta od czasu dostajey całkując prawo zachowania oentu pędu: dφ r dt = φ φ dφ dφ dr = dt dr dt Dostajey równanie toru r = r ( φ) φ φ = dφ= = dt r r ( φ) r r E V r dr r Jan Królikowski Fizyka IBC 5
6 Potencjał efektywny. Bariera odśrodkowa Prawo zachowania energii oże być zapisane w postaci: r + V( r) + = E r Człon zależny od nosi nazwę bariery odśrodkowej, bo F φ = = = dr r r dt d o r d 3 skierowana jest od centru siły. r. akad. 5/ 6 Sua energii potencjalnej i członu odśrodkowego to efektywna energia potencjalna: E = V( r) + r p,ef Jan Królikowski Fizyka IBC 6
7 Potencjał efektywny. Bariera odśrodkowa cd. r. akad. 5/ 6 Punkty zwrotne: E E r = p,ef E Spadanie, zderzenia /r Dozwolony obszar ruchu r E p,ef V(r) Układy związane Jan Królikowski Fizyka IBC 7
8 r. akad. 5/ 6 Wzór Bineta: równanie toru w polu sił centralnych Równania ruchu w płaszczyźnie ruchu siła a tylko składową radialną: ( ) φ ( ) a = r rφ = F r a = rφ+ rφ = r Drugie z tych równań to zasada zachowania oentu pędu: d ( ) φ = φ d a r = = rdt rdt Równanie toru otrzyay zaieniając różniczkowanie po czasie na różniczkowanie po fi: d dφ d d = = φ dt dt dφ r d Stosując dwukrotnie dostajey: d r = r dφ r Podstawiając do r. Radialnego dostajey wzór Bineta: d r + = Fr dφ r r Jan Królikowski Fizyka IBC 8
9 r. akad. 5/ 6 Kiedy tor wyraża się przez funkcje trygonoetryczne? Przyjijy, że F(r)=Fr n. Wtedy ay: du φ φ = E F n + u u n+ Całka daje na arcsin gdy pod pierwiastkie ay wieloian drugiego stopnia bo: ( u) d ξ arcsin ξ A ξ A φ=φ = = Zachodzi to dla n=, 3 i - oscylator Siła grawitacji i kulobowska Jan Królikowski Fizyka IBC 9
10 May: Wzór Bineta: Przykład: całkowanie wzoru Bineta dla siły grawitacyjnej α = = GM r r Fr d α + = = φ d r r p Ma rozwiązanie w postaci krzywej stożkowej ogniskie w centru siły: ε = + cos φ φ r p p p r = +ε cos φ φ Charakter stożkowej zależy od wartości iośrodu ε:. ε < elipsa r. akad. 5/ 6. ε = parabola krzywa zierza do nieskończoności dla φ = φ +π 3. ε > hiperbola krzywa zierza do nieskończoności dla φ = φ +arccos(/ ε) Jan Królikowski Fizyka IBC
11 r. akad. 5/ 6 Wartość iośrodu ε Miośród wyznaczay wstawiając wyrażenie na u=/r do całki energii otrzyanej ze wzoru Bineta (tr. 3): ε du ε α u = = + cos ( φ φ ) ; = sin ( φ φ ) ; = r p p dφ p p du + E u = + u dφ p ε ε E ε sin cos cos ( φ φ ) + + ( φ φ ) = + + ( φ φ ) p p p pα p p p pe p E p p p α p α ε + = ; ; = + ε = + ε + E = + α pe α Jan Królikowski Fizyka IBC
12 r. akad. 5/ 6 Miośród jako funkcja energii pe ε = + E = + ; p>, α> α α Widać, że iośród jest: niejszy od rozwiązanie eliptyczne dla ujenych energii, większy od rozwiązanie hiperboliczne dla dodatnich energii, równy rozwiązanie paraboliczne dla energii zerowych Jan Królikowski Fizyka IBC
13 r. akad. 5/ 6 Dodatek: Całkowanie wzoru Bineta dla sił centralnych przez kwadratury Widać, że w polu sił centralnych naturalną zienną jest u=/r. W ziennej u F(r)=F(/u)=f(u) i ze wzoru Bineta dochodziy do r.r. z rozdzielonyi ziennyi:: du du d u d φ + u = f u d du du + u = f u dφ dφ u dφ dφ u φ du fu + u = du+ C =+ F( r) dr+ C (*) Jan Królikowski Fizyka IBC 3
14 r. akad. 5/ 6 Ostatni wzór jest tożsay z całką (prawe zachowania) energii: Jeżeli paiętay, że praca siły radialnej jest równa (energii potencjalnej): Stąd stała C jest proporcjonalna do energii całkowitej E: Dodatek cd. Przekształcay dalej (*) z tr. 9, tak, żeby rozdzielić zienne: + φ r r + V r = C ( ) C = Vr Frdr = E du = Frdr+ C u dφ du + C =φ Frdr + C u dr + φ =φ r F( r) dr+ C ( / r) Jan Królikowski Fizyka IBC 4 r E V r dr r =φ φ
15 r. akad. 5/ 6 Ostatnie równanie jest takie sae jak otrzyane już r. toru na tr. 5. Jest to sprawdzenie, że z równania Bineta ożey znaleźć ruch i tor dla sił centralnych. Dodatek cd. Jan Królikowski Fizyka IBC 5
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Zagadnienie dwóch ciał
Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Fizyka 1 (mechanika) AF14. Wykład 10
Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 12.12.2016 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.
Zasady zachowania Pęd i moment pędu Praca, moc, energia Ruch pod działaniem sił zachowawczych Pęd i energia przy prędkościach bliskich prędkości światła Pęd i moment pędu dp/dt = F p = const, gdy F = 0
Dwa przykłady z mechaniki
Rozdział 6 Dwa przykłady z mechaniki W rozdziale tym przedstawimy proste przykłady rozwiązań równań mechaniki Newtona. Mechanika Newtona zajmuje się badaniem ruchu układu punktów materialnych w przestrzeni
II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie
II. Położenie i prędkość cd. Wekory syczny i normalny do oru. II.3 Przyspieszenie Wersory cylindrycznego i sferycznego układu współrzędnych krzywoliniowych Wyrażenia na prędkość w układach cylindrycznym
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Fizyka 1 (mechanika) AF14. Wykład 10
Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 04.12.2017 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Co to są równania ruchu? Jak je całkować?
Co to są równania ruchu? Jak je całkować? Maria Przybylska CA UMK 10.03.2010 M. Przybylska (CA UMK) Ruch i całki 10.03.2010 1 / 29 Ruch ciała i jego opis Problemy co to jest ruch: zmiana położenia ciała
22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
Obliczanie długości łuku krzywych. Autorzy: Witold Majdak
Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną
Obliczanie indukcyjności cewek
napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
O ciężarkach na bloczku z uwzględnieniem masy nici
46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
Podstawy Fizyki Współczesnej I. Blok I
Podstawy Fizyki Współczesnej I Podsumowanie wykładu (17.06.2008) Uwaga: zagadnienia oznaczone gwiazdką są nieco bardziej złożone i na ocenę dostateczną jest wymagana jedynie ich pobieżna znajomość. Zadania
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona:
Grawitacja Prawo powszechnego ciążenia Prawo powszechnego ciążenia Newtona (1687) mówi, że siła przyciągania grawitacyjnego między dwoma ciałami jest proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna
Fizyka 1(mechanika) AF14. Wykład 5
Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
opracował Maciej Grzesiak Całki krzywoliniowe
opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,
15 Potencjały sferycznie symetryczne
z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Nara -Japonia. Yokohama, Japan, September 2014
Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu
Rysunek 1: Potencjał wynikający z treści zadania 1. Zaznaczono także punkty powrotu dla ruchu z energią E. Kolokwium I
E x L 0 L Rysunek : Potencjał wynikający z treści zadania. Zaznaczono także punkty powrotu dla ruchu z energią E. Zadanie. Kolokwium I Zbadać szczegółowo ruch koralika o masie m poruszającego się po prostym
METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO
R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy
Geometria Struny Kosmicznej
Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE
III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów
IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów Jan Królikowski Fizyka IBC 1 Ruch swobodny i nieswobodny. Stany równowagi Rozważamy ciało w pewnym układzie inercjalnym (UI). Gdy: prędkość tego
V. RÓWNANIA RUCHU MECHANIKI KLASYCZNEJ Janusz Adamowski
V. RÓWNANIA RUCHU MECHANIKI KLASYCZNEJ Janusz Adamowski 1 1 Wstęp Rozważamy ruch jednej cząstki klasycznej w jednym wymiarze. Otrzymane wyniki będzie można łatwo uogólnić na przypadek pojedynczej cząstki
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Analiza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Wielomiany Legendre a
grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla
Mechanika ruchu obrotowego
Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym
Zasada zachowania pędu
Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać
Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =
achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.
III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny
58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
1 Równania różniczkowe drugiego rzędu
Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu
Spis treści Wektory i działania na wektorach 2 Kinematyka 3 Dynamika punktu materialnego
4 Spis treści 1 Wektory i działania na wektorach 1 1.1 Dodawanie wektorów.......................... 1 1.2 Odejmowanie wektorów......................... 3 1.3 Mnożenie wektora przez liczbę.....................
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 10 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego
Obwody prądu przemiennego bez liczb zespolonych
FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić
Fizyka 5. Janusz Andrzejewski
Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO.1. Względność ruchu. Układy współrzędnych.. Prędkość i przyspieszenie.3. Ruch prostoliniowy.4. Ruch krzywoliniowy 1 KINEMATYKA PUNKTU MATERIALNEGO
Krzywe stożkowe Lekcja VII: Hiperbola
Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie
Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Funkcje hiperboliczne
Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x
Geometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
Fizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
Całki krzywoliniowe skierowane
Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Sterowanie w programie ADAMS regulator PID. Przemysław Sperzyński
Sterowanie w programie ADAMS regulator PID Przemysław Sperzyński Schemat regulatora K p e t e t = u zad t u akt (t) M = K p e t + K i e t + K d de(t) u zad uakt M K i e t K d de t Uchyb regulacji człony
Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)
Zadania z mechaniki dla nanostudentów Seria 3 (wykład prof J Majewskiego) Zadanie 1 Po równi pochyłej o kącie nachylenia do poziomu równym α zsuwa się klocek o masie m, na który działa siła oporu F = m
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
ZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu