Naprężenia w ośrodku gruntowym
|
|
- Izabela Grzybowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Naprężenia w ośrodku gruntowym Naprężenia geostatycne (pierwotne, bytowe) Wpływ wody gruntowej na naprężenia pierwotne Naprężenia wywołane siłą skupioną rowiąanie oussinesq a Naprężenia pochodące od obciążenia równomiernie rołożonego Naprężenia pod fundamentem bepośrednim Osiadania fundamentu bepośredniego
2 Naprężenia wywołane ciężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwionego: h γ h h γ jednorodne podłoże gruntowe o ciężare objętościowym γ n γ m γ h i i i
3 Wpływ wody gruntowej na naprężenia pierwotne h w.w.g. γ h h w jednorodne podłoże gruntowe γ γ γ h h w γ ( h h w ) γ '
4 Naprężenia wywołane ciężarem własnym gruntu (n. geostatycne) Podiałka głębokości: m D γ Podiałka naprężeń: 0 kpa h 0 γ wg m γ D D γ γ ' m 0 γ ' 0 γ 4 ' m m 4 ( m ) γ ' r h D γ m γ
5 Osiadanie terenu wywołane obniżeniem poiomu wód podiemnych Zwiąek pomiędy osiadaniem terenu a poiomem wody gruntowej na terenie Santa Clara Valley, Kalifornia. Źródło: Environmental Geology. ennett M. R., Doyle P, John Willey & Sons, 997 Osiadanie terenu w latach na terenie Santa Clara Valley, Kalifornia. Źródło: Groundwater. Freee A. R., Cherry A. J. Prentice Hall, 979
6 Depth to Groundwater and Land Subsidence As water was pumped from the ground, the land surface above slowly sank. The blue graph shows changes in groundwater levels in a downtown San Jose monitoring well from 95 to 999. The brown line above shows corresponding changes in land elevation, at an exaggerated vertical scale. Modified from Ingebritsen and Jones, USGS Circular 8 (999).
7 Joseph F. Poland of U.S. Geological Survey stands near bench mark S66 southwest of Mendota in the San Joaquin Valley, California. The bench mark site subsided 9m from 95 to 977, because of intensive withdrawal of ground water. Signs on the power pole indicate the respective positions of the land surface in 95, 955, and 977.
8 Naprężenia pionowe w półprestreni gruntowej obciążonej siłą skupioną - rowiąanie oussinesq a (885) Założenia:. Ośrodek gruntowy jest jednorodny i iotropowy (tn. diałanie jednakowych naprężeń w dowolnym kierunku powoduje jednakowe odkstałcenia. Grunt jest materiałem sprężystym, tn. podlega prawu Hooke a. Naprężenia rochodą się promieniście od punktu pryłożenia siły 4. Nie uwględnia się ciężaru własnego gruntu 5. Obowiąuje asada superpoycji 6. Pionowo diałające siła powoduje obniżenie się półkuli o dowolnym promieniu e środkiem w punkcie acepienia siły o jednakową wartość S Ćwicenia!!
9 Naprężenia radialne w półprestreni gruntowej obciążonej siłą skupioną - rowiąanie oussinesq a (885) R R A r A A A A' cosα α R r R α ZRcosα M A r π R cosα Z A' Rcosα A cosα Rcos A α r cos α
10 M R r α Naprężenia pionowe w półprestreni gruntowej obciążonej siłą skupioną - rowiąanie oussinesq a (885) Schemat obciążenia podłoża Podstawowe ależności: R cosα r R Wory: α π cos R α π 5 cos 5 R π 5/ ) ( r π 5/ r π
11 Graficna ilustracja naprężeń Iobary naprężeń radialnych i naprężeń pionowych Naprężenia pionowe Naprężenia radialne
12 Graficna ilustracja naprężeń Iobary naprężeń pionowych konstrukcja graficna
13 Graficna ilustracja naprężeń Rokład naprężeń na różnych głębokościach Krywa anikania naprężeń
14 Graficna ilustracja naprężeń Rokład naprężeń wdłuż prostej a, równoległej do kierunku diałania siły r a
15 Zadanie iorąc pod uwagę rokład naprężeń pionowych wdłuż prostej a wynacyć analitycnie głębokość m, na której wartość naprężenia jest najwięksa. r a max m Rowiąanie adania można prysłać na mój adres do wtorku, god. 4.00
16 r.0 m r 4.0 m M.0 m Zasada superpoycji (olmana) - sumowania naprężeń Jeżeli siła, powoduje w określonym miejscu ośrodka gruntowego naprężenie, aś siła wywołuje w tym samym miejscu naprężenie, to całkowite naprężenie w tym punkcie ośrodka jest sumą naprężeń wywołanych pre każdą sił osobna. ( ) ( ) ] [ cos cos ) ( ) ( kpa r r M M π π π α α π Prykład oblicenia naprężenia:
17 Zamiana obciążenia równomiernie rołożonego na astępce siły skupione i L M Δ ΔL r i R i i 5/ r i i i π Naprężenie pionowe wywołane pojedyncą siłą astępcą wynosi: n i i i n i i r 5/ π Całkowite naprężenie pionowe stanowi sumę naprężeń od wsystkich sił astępcych (asada superpoycji) L q i q
18 y x L dx dy d q r R M d y x Wynacenie naprężenia pionowego od obciążenia ciągłego q a pomocą elementarnych sił skupionych dxdy y x q L 5/ 0 0 π 5/ 5/ y x q r d d π π Naprężenie pionowe wywołane pre elementarną siłę skupioną (q): Całkowite naprężenie pionowe stanowi sumę naprężeń od wsystkich elementarnych sił astępcych (asada superpoycji): q
19 Metoda punktów narożnych (Steinbrenner, 96) W prypadku gdy ropatrywany punkt M najduje się pod narożnikiem obciążającej powierchni prostokątnej naprężenie pionowe w tym punkcie oblica się e woru: n q η gdie: n arctg L L L L L π η
20 Nomogram do wynacania współcynnika η n η n 0,000 0,050 0,00 0,50 0,00 0,50 0 / L/ L/.5 L/ L/ L/ autor: Seweryn Slachcic
21 Metoda punktów środkowych (Newmark i Polsin, 95) W prypadku gdy ropatrywany punkt M najduje się pod geometrycnym środkiem obciążającej powierchni prostokątnej naprężenie pionowe w tym punkcie oblica się e woru: 0 η q gdie: arctg L L L L L π η
22 Nomogram do wynacania współcynnika η 0 η 0,000 0,00 0,00 0,00 0,400 0,500 0,600 0,700 0,800 0,900,000 0,0 0 0,5,0,5 Z/,0,5,0 L/ L/.5 L/ L/ L/ 5,5 4,0 4,5 5,0 autor: Seweryn Slachcic
23 Zastosowanie metody punktów narożnych do oblicania naprężeń pionowych w dowolnym miejscu półprestreni gruntowej (). W prypadku, gdy ropatrywany punkt M leży pod obrysem powierchni prostokątnej należy podielić tak powierchnię prostokątną, aby punkt ten stanowił naroże nowo utworonych prostokątów i posłużyć się następującym schematem: L L L A C η nmha f L, H M D η nmcd f L, G F E η nmdef f L, ( η η η ) q nmha nmcd nmdef η nmfgh η nmfgh f L,
24 Zastosowanie metody punktów narożnych do oblicania naprężeń pionowych w dowolnym miejscu półprestreni gruntowej (). W prypadku, gdy ropatrywany punkt M leży poa obrysem powierchni prostokątnej należy wprowadić dodatkowe powierchnie prostokątne w taki sposób, aby punkt ten stanowił naroże nowo powstałych prostokątów i posłużyć się następującym schematem: L H L L M D η nmfgh f L, A C η nmdef f, L η nmah f L, G F E η nmdc f L, ( η η η ) q nmfgh nmdef nmah η nmdc
25 Fundamenty budowli (podiał) FUNDAMENTY UDOWLI FUNDAMENTY PŁYTKIE (bepośrednie) FUNDAMENTY GŁĘOKIE (pośrednie) Stopy fundamentowe Ławy fundamentowe Płyty Rusty Skrynie Pale Studnie Kesony
26 Naprężenia pod fundamentem bepośrednim I. Stan pred ropocęciem budowy D h γ γ wg ' γ γ h ' γ ' γ 4 Podiałka głębokości: Podiałka naprężeń: 0 m m m m 4 m 0 kpa
27 Naprężenia pod fundamentem bepośrednim II. Stan po wykonaniu wykopu fundamentowego D Podiałka głębokości: m Podiałka naprężeń: 0 kpa 0 m wg s m m m m 4
28 Naprężenia pod fundamentem bepośrednim III. Stan po asypaniu wykopu fundamentowego D s m Podiałka głębokości: m Podiałka naprężeń: 0 kpa 0 m wg m m m 4
29 Naprężenia pod fundamentem bepośrednim IV. Stan po wykonaniu obiektu budowlanego D q /L s m d t m wg m m m 4 Podiałka głębokości: Podiałka naprężeń: 0 m 0 kpa
30 Oblicanie osiadania fundamentów Oblicanie osiadania aleca się preprowadić metodą naprężeń. Osiadanie S i warstwy należy wynacyć jako sumę osiadania wtórnego S i w akresie naprężenia wtórnego s, astosowaniem modułu ściśliwości wtórnej gruntu M (lub modułu wtórnego odkstałcenia E, w ależności od metody oblicania), ora osiadania pierwotnego S i w akresie naprężenia dodatkowego d, astosowaniem modułu ściśliwości pierwotnej gruntu M o (lub E o ). Osiadanie S i warstwy podłoża o miążsości m i oblica się wg worów: S S i '' i S ' i S S '' i ' i s i mi λ M d i m M oi i i
31 " S i osiadanie wtórne warstwy i, [cm], M i, M oi osiadanie pierwotne warstwy i, [cm], odpowiednio wtórne i dodatkowe naprężenie w podłożu pod fundamentem, w połowie grubości warstwy, [kpa], edometrycny moduł ściśliwości, odpowiednio wtórnej i pierwotnej, ustalony dla gruntu warstwy i, kpa, m i grubość warstwy i, cm, λ ' S i s i, λ 0 λ d i współcynnik uwględniający stopień odprężenia podłoża po wykonaniu wykopu, którego wartość należy pryjmować: gdy cas wnosenia budowli (od wykonania wykopów fundamentowych do akońcenia stanu surowego, montażem urądeń stanowiących obciążenie stałe) nie trwa dłużej niż rok, gdy cas wnosenia budowli jest dłużsy niż rok. Warstwy o grubości więksej niż połowa serokości fundamentu należy dielić dodatkowo na cęści o miążsości nie prekracającej 0.5.
32 Całkowite osiadanie podłoża pod fundamentem bepośrednim, a atem osiadanie całej budowli oblica się sumując osiadania wsystkich warstw cąstkowych według woru: S gdie: n i S i i numer warstwy cąstkowej; n ilość warstw, S i osiadanie warstwy i tej.
33 Podiałka głębokości: m D q /L Podiałka naprężeń: 0 kpa 0 wg m m m / m / s d S m m 4
34 Wynacenie głębokości podłoża budowlanego ( max ) Podiałka głębokości: m D q /L Podiałka naprężeń: 0 kpa 0 0. h γ wg m h γ d max m m wykres naprężeń pierwotnych h γ 0. h γ linia pomocnica 0. h γ m 4
35 Zadania 4. ZADANIA Z ROZKŁADU NAPRĘŻEŃ W PODŁOŻU GRUNTOWYM Zad. 4.. Na jakiej głębokości naprężenia dodatkowe od nacisku q00 kpa prekaywanego pre fundament o serokości,0 m równają się naprężeniami geostatycnymi w podłożu gruntowym. Rokład η pryjąć liniowy do głębokości. Zad. 4.. W podłożu gruntowym obniżono wierciadło wody gruntowej o 5,0 m. Policyć wartość efektywnych naprężeń geostatycnych w gruncie w punkcie A pred i po obniżeniu wierciadła wody gruntowej. Zad. 4.. Pod punktami A, i C, na głębokości 5.0m wynacyć wartości pionowych naprężeń dodatkowych od oddiaływania fundamentów I i II. Naprężenia od fundamentu I policyć jak od siły skupionej według woru ussinesq a. Naprężenia od fundamentu II policyć jak pod obsarem prostokątnym obciążonym obciążeniem q. Zad W punkcie A, na głębokości 5.0m wynacyć wartości naprężeń pionowych od oddiaływania fundamentów I i II. Oblicenia wykonać metodą punktów narożnych.
36 Zadania ZADANIA Z OSIADAŃ PODŁOŻA GRUNTOWEGO Zad. 5.. Który fundament osiądie więcej? Policyć wartości osiadań fundamentów. Rokład η pryjąć liniowy do głębokości. Zad. 5.. Policyć osiadanie warstwy Gπ od nacisków dodatkowych q prekaywanych pre fundament. Rokład η pryjąć liniowy do głębokości 4. Zad. 5.. Policyć osiadanie warstwy namułu w wyniku obniżenia wierciadła wody gruntowej o 4.0 m. Pryjąć, że obniżenie wody wykonano na nacnym obsare, stąd η w całej miążsości namułu. Zad Jaką serokość powinna mieć ława fundamentowa, aby osiadania podłoża gruntowego nie prekrocyły 0 mm? Oblicenia wykonać metodą odkstałceń jednoosiowych, pryjmując liniowy rokład współcynnika η, jak pokaano na wykresie. γ0 kn/m, M o 0 MPa
Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne)
Naprężena wywołane cężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwonego: h γ h γ h jednorodne podłoże gruntowe o cężare objętoścowym γ γ h n m γ Wpływ wody gruntowej na naprężena
Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl
Zakres wiadomości na II sprawdzian z mechaniki gruntów:
Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów
Kolokwium z mechaniki gruntów
Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie
1. ZADANIA Z CECH FIZYCZNYCH GRUNTÓW
1. ZDNI Z CECH FIZYCZNYCH GRUNTÓW Zad. 1.1. Masa próbki gruntu NNS wynosi m m = 143 g, a jej objętość V = 70 cm 3. Po wysuszeniu masa wyniosła m s = 130 g. Gęstość właściwa wynosi ρ s = 2.70 g/cm 3. Obliczyć
Naprężenia w ośrodku gruntowym
Napężena w ośodku guntowym Napężena geostatycne(pewotne) Wpływ wody guntowej na napężena pewotne Napężena wywołane słą skuponą Napężena pocodące od obcążena ównomene ołożonego Napężena pod fundamentem
Model numeryczny terenu Wyniki (Faza budowy 1) Dane wejściowe (Faza budowy 2) Soli Boring Polska Warszawa - Otwock
Model numerycny terenu Wyniki (Faa budowy ) Generacja Parametry Wygładanie : średnie Krawędź aktywna : 0,0 % Dane wejściowe (Faa budowy ) Pryporądkow. Nawa warstwy Pryporądkowany grunt Teren Warstwa Warstwa
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane
PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION
XXVI Konferencja awarie budowlane 213 Naukowo-Technicna ZYGMUNT MEYER, meyer@ut.edu.pl Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki MARIUZ KOWALÓW, m.kowalow@gco-consult.com
Egzamin z MGIF, I termin, 2006 Imię i nazwisko
1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość
(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32
N r Rodzaj gruntu I /I L Stan gr. K l. Ф u (n) [ ] Ф u (r) [ ] C u (n) kpa γ (n) kn/ m γ (r) kn/m γ' (n) kn/ m N C N N 1 Pπ 0.4 mw - 9.6 6.64-16,5 14,85 11,8,1 1,6 4, Пp 0.19 mw C 15.1 1.59 16 1,0 18,9
TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1
ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym
Parcie i odpór gruntu. oddziaływanie gruntu na konstrukcje oporowe
Parcie i odpór gruntu oddziaływanie gruntu na konstrukcje oporowe Parcie i odpór gruntu oddziaływanie gruntu na konstrukcje oporowe Mur oporowy, Wybrzeże Wyspiańskiego (przy moście Grunwaldzkim), maj 2006
, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych:
Wybrane zagadnienia do projektu fundamentu bezpośredniego według PN-B-03020:1981 1. Wartości charakterystyczne i obliczeniowe parametrów geotechnicznych oraz obciążeń Wartości charakterystyczne średnie
ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.
PYTANIA I ZADANIA v.1.3 26.01.12 ZADANIA za 2pkt. ZADANIA Podać wartości zredukowanych wymiarów fundamentu dla następujących danych: B = 2,00 m, L = 2,40 m, e L = -0,31 m, e B = +0,11 m. Obliczyć wartość
Podłoże warstwowe z przypowierzchniową warstwą słabonośną.
Piotr Jermołowicz - Inżynieria Środowiska Szczecin Podłoże warstwowe z przypowierzchniową warstwą słabonośną. W przypadkach występowania bezpośrednio pod fundamentami słabych gruntów spoistych w stanie
1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.
1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą.
Piotr Jermołowicz Inżynieria Środowiska Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą. W przypadkach występowania
J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia
Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,
MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE
Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])
P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się
FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY
FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY Fundamenty są częścią budowli przekazującą obciążenia i odkształcenia konstrukcji budowli na podłoże gruntowe i równocześnie przekazującą odkształcenia
Empiryczny model osiadania gruntów sypkich
mpirycny model osiadania gruntów sypkich prof. dr hab. inż. Zygmunt Meyer, Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki, al. Piastów 5, 7-3 cecin dr hab. Marek Tarnawski,
ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa]
ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI 1. NapręŜenia pierwotne z ρ napręŝenia od obciąŝenia nadległymi warstwami gdzie: z = ( ρ h ) g = ( γ h ) i i i i ρ ρ i gęstość
gruntów Ściśliwość Wytrzymałość na ścinanie
Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne
DANE OGÓLNE PROJEKTU
1. Metryka projektu Projekt:, Pozycja: Posadowienie hali Projektant:, Komentarz: Data ostatniej aktualizacji danych: 2016-07-04 Poziom odniesienia: P 0 = +0,00 m npm. DANE OGÓLNE PROJEKTU 15 10 1 5 6 7
PROJEKT STOPY FUNDAMENTOWEJ
TOK POSTĘPOWANIA PRZY PROJEKTOWANIU STOPY FUNDAMENTOWEJ OBCIĄŻONEJ MIMOŚRODOWO WEDŁUG WYTYCZNYCH PN-EN 1997-1 Eurokod 7 Przyjęte do obliczeń dane i założenia: V, H, M wartości charakterystyczne obciążeń
3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)
Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje
Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego
Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego mechanizmu ścinania. Grunty luźne nie tracą nośności gwałtownie
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7
Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)
Zadanie 2. Zadanie 4: Zadanie 5:
Zadanie 2 W stanie naturalnym grunt o objętości V = 0.25 m 3 waży W = 4800 N. Po wysuszeniu jego ciężar spada do wartości W s = 4000 N. Wiedząc, że ciężar właściwy gruntu wynosi γ s = 27.1 kn/m 3 określić:
Przykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krzywej temperatura-czas
Dokument Ref: SX043a-PL-EU Strona 1 5 Prykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krywej temperatura-cas Wykonał Z. Sokol Data styceń 006 Sprawdił F. Wald Data styceń
WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA. 00-792 Warszawa, ul. Olszewska 12 BUDOWNICTWO OGÓLNE. plansze dydaktyczne. Część VII
WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA Wydział Architektury 00-792 Warszawa, ul. Olszewska 12 BUDOWNICTWO OGÓLNE plansze dydaktyczne Część VII Posadowienie budynków Gabiony www.wseiz.pl POSADOWIENIE BUDYNKÓW
DWUCZĘŚCIOWE ŁOŻYSKO POROWATE
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność
WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA Wydział Architektury Warszawa, ul. Wawelska 14 BUDOWNICTWO OGÓLNE. plansze dydaktyczne.
WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA Wydział Architektury 02-061 Warszawa, ul. Wawelska 14 BUDOWNICTWO OGÓLNE plansze dydaktyczne Część VII Posadowienie budynków Gabiony Warszawa 2010 r. Plansza 1 / 16
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek
Wymiarowanie sztywnych ław i stóp fundamentowych
Wymiarowanie sztywnych ław i stóp fundamentowych Podstawowe zasady 1. Odpór podłoża przyjmuje się jako liniowy (dla ławy - trapez, dla stopy graniastosłup o podstawie B x L ścięty płaszczyzną). 2. Projektowanie
UKŁADY TENSOMETRII REZYSTANCYJNEJ
Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych
ĆWICZENIE NR 93. WŁASNOŚCI OŚRODKÓW DYSPERSYJNYCH Pomiar dyspersji materiałów za pomocą refraktometru Abbe go, typ RL1, prod. PZO
ĆWICZENIE NR 93 WŁSNOŚCI OŚRODKÓW DYSPERSYJNYCH Pomiar dyspersji materiałów a pomocą refraktometru bbe go, typ RL1, prod. PZO I. Zestaw pryrądów 1. Refraktometr bbe go 2. Oświetlac światła białego asilacem
Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści
S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu
Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.
TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy
Osiadanie fundamentu bezpośredniego
Przewodnik Inżyniera Nr. 10 Aktualizacja: 02/2016 Osiadanie fundamentu bezpośredniego Program powiązany: Plik powiązany: Fundament bezpośredni Demo_manual_10.gpa Niniejszy rozdział przedstawia problematykę
POSADOWIENIE BEZPOŚREDNIE DRUGI STAN GRANICZNY
POSADOWIENIE BEZPOŚREDNIE DRUGI STAN GRANICZNY Obliczeń stanu granicznego użytkowalności można nie przeprowadzać dla: jednokondygnacyjnych hal przemysłowych z suwnicami o udźwigu do 500 kn o konstrukcji
ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU
Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej
Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta.
Ćwicenie 1 Wynacanie współcynnika roprasania wrotnego promieniowania beta. Płytki roprasające Ustawienie licnika Geigera-Műllera w ołowianym domku Student winien wykaać się najomością następujących agadnień:
ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY
Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd
PROJEKT GEOTECHNICZNY
Nazwa inwestycji: PROJEKT GEOTECHNICZNY Budynek lodowni wraz z infrastrukturą techniczną i zagospodarowaniem terenu m. Wojcieszyce, ul. Leśna, 66-415 gmina Kłodawa, działka nr 554 (leśniczówka Dzicz) jedn.ewid.
Wybrane zagadnienia projektowania fundamentu bezpośredniego według PN-B03020:1981
Wybrane zagadnienia projektowania fundamentu bezpośredniego według PN-03020:1981 Nieniejsze opracowanie przedstawia sposób postępowania przy projektowaniu fundamentu bezpośredniego według (nie)obowiązującej
mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2
4. mur oporowy Geometria mr1 Wysokość ściany H [m] 2.50 Szerokość ściany B [m] 2.00 Długość ściany L [m] 10.00 Grubość górna ściany B 5 [m] 0.20 Grubość dolna ściany B 2 [m] 0.24 Minimalna głębokość posadowienia
Zarys geotechniki. Zenon Wiłun. Spis treści: Przedmowa/10 Do Czytelnika/12
Zarys geotechniki. Zenon Wiłun Spis treści: Przedmowa/10 Do Czytelnika/12 ROZDZIAŁ 1 Wstęp/l 3 1.1 Krótki rys historyczny/13 1.2 Przegląd zagadnień geotechnicznych/17 ROZDZIAŁ 2 Wiadomości ogólne o gruntach
Naprężenia i odkształcenia Stress & strain. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
Naprężenia i odkstałcenia Stress & strain Naprężenia i odkstałcenia Simplifing assumptions:. Soil is continuous. Soil is homogeneous. Soil is isotropic A continuous bod subjected to a sstem of eternal
OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA.
OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA. Założenia przyjęte do wykonania projektu konstrukcji: - III kategoria terenu górniczego, drgania powierzchni mieszczą się w I stopniu intensywności, deformacje
Projekt głębokości wbicia ścianki szczelnej stalowej i doboru profilu stalowego typu U dla uzyskanego maksymalnego momentu zginającego
Projekt głębokości wbicia ścianki szczelnej stalowej i doboru profilu stalowego typu U dla uzyskanego maksymalnego momentu zginającego W projektowaniu zostanie wykorzystana analityczno-graficzna metoda
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);
Wybrane stany nieustalone transformatora:
Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich
EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr.
EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr. Pyt. 1 (ok. 5min, max. 4p.) Pyt. 2 (ok. 5min, max. 4p.) Pyt. 3 (ok. 5min, max. 4p.) Pyt. 4 (ok. 5min, max. 4p.) Pyt. 5 (ok. 5min, max. 4p.) Zad. 1. (ok. 15min,
Zagadnienia konstrukcyjne przy budowie
Ogrodzenie z klinkieru, cz. 2 Konstrukcja OGRODZENIA W części I podane zostały niezbędne wiadomości dotyczące projektowania i wykonywania ogrodzeń z klinkieru. Do omówienia pozostaje jeszcze bardzo istotna
Raport obliczeń ścianki szczelnej
Wrocław, dn.: 5.4.23 Raport obliczeń ścianki szczelnej Zadanie: "Przykład obliczeniowy z książki akademickiej "Fundamentowanie - O.Puła, Cz. Rybak, W.Sarniak". Profil geologiczny. Piasek pylasty - Piasek
Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.
Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła
Ćwiczenie nr 2: Posadowienie na palach wg PN-83 / B-02482
Ćwiczenie nr 2: Posadowienie na palach wg PN-83 / B-02482 Ćwiczenie nr 3: Posadowienie na palach wg PN-84/B-02482 2 Dla warunków gruntowych przedstawionych na rys.1 zaprojektować posadowienie fundamentu
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
PODSTAWY KONSTRUKCJI MASZYN
POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec
Badanie transformatora jednofazowego
BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania
Wykopy - wpływ odwadniania na osiadanie obiektów budowlanych.
Piotr Jermołowicz Inżynieria Środowiska Szczecin Wykopy - wpływ odwadniania na osiadanie obiektów budowlanych. Obniżenie zwierciadła wody podziemnej powoduje przyrost naprężenia w gruncie, a w rezultacie
CZ. III - OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE
CZ. III - OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE OBIEKT: Rozbudowa kompleksu zjeżdżalni wodnych w Margoninie o zjeżdżalnie o ślizgu pontonowym ADRES: dz. nr 791/13, 792/8, obręb ew. 0001 m. Margonin, jednostka
NOŚNOŚĆ PALI POJEDYNCZYCH
Rok III, sem. V 1 ZADANIE PROJEKTOWE NR 2 Projekt posadowienia na palach fundamentowych Fundamentowanie nauka zajmująca się projektowaniem i wykonawstwem fundamentów oraz robót fundamentowych w różnych
OZNACZENIE NIERUCHOMOŚCI KTÓREJ DOTYCZY UWAGA (numery działek lub inne określenie terenu objętego uwagą) USTALENIA PROJEKTU PLANU DZIAŁKA OBRĘB 10/2,
Załącnik Nr 2 do Uchwały Nr... Rady Krakowa dnia... O SPOSOBIE ROZPATRZE UWAG DO MIEJSCOWEGO ZAGOSPODAROWA PRZESTRZENNEGO OBSZARU PARK RZECZNY DRWINKA - PODEDWORZE W KRAKOWIE, W TYM UWAG ZGŁOSZONYCH W
Obciążenia. Wartość Jednostka Mnożnik [m] oblicz. [kn/m] 1 ciężar [kn/m 2 ]
Projekt: pomnik Wałowa Strona 1 1. obciążenia -pomnik Obciążenia Zestaw 1 nr Rodzaj obciążenia 1 obciążenie wiatrem 2 ciężar pomnika 3 ciężąr cokołu fi 80 Wartość Jednostka Mnożnik [m] obciążenie charakter.
Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2
Projekt: Wzmocnienie skarpy w Steklnie_09_08_2006_g Strona 1 Geometria Ściana oporowa posadowienie w glinie piaszczystej z domieszką Ŝwiru Wysokość ściany H [m] 3.07 Szerokość ściany B [m] 2.00 Długość
Analiza fundamentu na mikropalach
Przewodnik Inżyniera Nr 36 Aktualizacja: 09/2017 Analiza fundamentu na mikropalach Program: Plik powiązany: Grupa pali Demo_manual_en_36.gsp Celem niniejszego przewodnika jest przedstawienie wykorzystania
NOŚNOŚĆ PALI POJEDYNCZYCH
NOŚNOŚĆ PALI POJEDYNCZYCH Obliczenia wykonuje się według PN-83/B-02482 Fundamenty budowlane. Nośność pali i fundamentów palowych oraz Komentarza do normy PN-83/B-02482, autorstwa M. Kosseckiego (PZIiTB,
KOMINY MUROWANE. Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać:
KOMINY WYMIAROWANIE KOMINY MUROWANE Przekroje trzonu wymiaruje się na stan graniczny użytkowania. Sprawdzenie należy wykonać: w stadium realizacji; w stadium eksploatacji. KOMINY MUROWANE Obciążenia: Sprawdzenie
Projektowanie geometrii fundamentu bezpośredniego
Przewodnik Inżyniera Nr 9 Aktualizacja: 02/2016 Projektowanie geometrii fundamentu bezpośredniego Niniejszy rozdział przedstawia problematykę łatwego i efektywnego projektowania posadowienia bezpośredniego.
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe
4. Twierdenie Greena. Wykład IV Twierdenia całkowe Płascyną orientowaną będiemy określać płascynę wyróżnionym na nie obrotem, wanym obrotem dodatnim. Orientację płascyny preciwną wględem danej orientacji
TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1
TRANSFORMATORY Transformator jednofaowy Zasada diałania E E Z od Rys Transformator jednofaowy Dla mamy Cyli e ω ( t) m sinωt cosωt ω π sin ωt + m m π E ω m f m 4, 44 f m E 4, 44 f E m 4, 44 f m E, a E
Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu
P o l i t e c h n i k a B i a ł o s t o c k a W y d i a ł E l e k t r y c n y Nawa predmiotu: Techniki symulacji Kierunek: elektrotechnika Kod predmiotu: EZ1C400 053 Numer ćwicenia: Temat ćwicenia: E47
Lp Opis obciążenia Obc. char. kn/m 2 f
0,10 0,30 L = 0,50 0,10 H=0,40 OBLICZENIA 6 OBLICZENIA DO PROJEKTU BUDOWLANEGO PRZEBUDOWY SCHODÓW ZEWNĘTRZNYCH, DRZWI WEJŚCIOWYCH SZT. 2 I ZADASZENIA WEJŚCIA GŁÓWNEGO DO BUDYNKU NR 3 JW. 5338 przy ul.
Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)
1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE
Pale fundamentowe wprowadzenie
Poradnik Inżyniera Nr 12 Aktualizacja: 09/2016 Pale fundamentowe wprowadzenie Celem niniejszego przewodnika jest przedstawienie problematyki stosowania oprogramowania pakietu GEO5 do obliczania fundamentów
Badanie wymiennika ciepła typu płaszczowo-rurowy
Badanie wymiennika ciepła typu płascowo-rurowy opracował Damian Joachimiak . Rodaje wymienników ciepła. Wymiennik ciepła (prenośnik ciepła) jest to urądenie, w którym ciepło prekaywane jest od jednego
OBLICZENIA STATYCZNE
OBLICZENIA STATYCZNE Robudowa istniejącego budynku świetlicy wiejskiej Inwestor: Gmina Skoki Adres: Kusewo diałka 130/5 i 128 Po.1.1.Dach krokiew. DANE: Wymiary prekroju: prekrój prostokątny Serokość b
W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo
PROJEKT ARCHITEKTONICZNO-BUDOWALNY GEOTECHNICZNE WARUNKI POSADOWIENIA
PROJEKT ARCHITEKTONICZNO-BUDOWALNY GEOTECHNICZNE WARUNKI POSADOWIENIA Przebudowa i rozbudowa budynku szkoły muzycznej wraz z zapleczem, przebudowa i rozbiórka infrastruktury technicznej, przewidzianej
Może tak? Definicja robocza. Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Literatura FIZYKA POWIERZCHNI I NANOSTRUKTURY
FIZYKA POWIERZCNI I NANOSTRUKTURY Literatura dr hab. Zbigniew Postawa Zakład Fiyki Doświadcalnej pok. 16 (nie 016!!) Tel. 5626 e-mail: p@castor.if.uj.edu.pl Sala 328, poniediałek 12 15 Be egaminu Zalicenie
Analiza konsolidacji gruntu pod nasypem
Przewodnik Inżyniera Nr 11 Aktualizacja: 02/2016 Analiza konsolidacji gruntu pod nasypem Program powiązany: Osiadanie Plik powiązany: Demo_manual_11.gpo Niniejszy rozdział przedstawia problematykę analizy
KONFERENCJA GRUNTY ORGANICZNE JAKO PODŁOŻE BUDOWLANE
KONFERENCJA GRUNTY ORGANICZNE JAKO PODŁOŻE BUDOWLANE PRZYKŁADY REALIZACJI SPECJALISTYCZNYCH ROBÓT FUNDAMENTOWYCH Opracowanie: mgr inż. Paweł Łęcki mgr inż. Joanna Mączyńska GT PROJEKT Poznań, maj 2018
Wymiana ciepła przez żebra
Katedra Silników Spalinowych i Pojadów TH ZKŁD TERMODYNMIKI Wymiana ciepła pre era - - Cel ćwicenia Celem ćwicenia jet adanie wpływu atoowania eer na intenywność wymiany ciepła. Badanie preprowada ię na
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 16, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fiki IV Optka elementami fiki współcesnej wkład 16, 16.04.01 wkład: poka: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wkład 15 - prpomnienie prepis Hugensa na propagację
Parametry geotechniczne gruntów ustalono na podstawie Metody B Piasek średni Stopień zagęszczenia gruntu niespoistego: I D = 0,7.
.11 Fundamenty.11.1 Określenie parametrów geotechnicznych podłoża Rys.93. Schemat obliczeniowy dla ławy Parametry geotechniczne gruntów ustalono na podstawie Metody B Piasek średni Stopień zagęszczenia