Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1
|
|
- Izabela Makowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy np. Down Jones Industrial ompiluje 30 acji. Inny, na przyład dochodowy WIG, uwzględniający dywidendy, szacowany jest na podstawie notowań 99% wszystich uczestniczących na giełdzie spółe ([4] str. 388). Prognozy ilościowe (np. robione przy użyciu przedziałów ufności) uwzględniają: funcję trendu najczęściej liniową badanie losowości rozładu reszt i autoorelacji sładnia losowego (zwyle addytywnego). rend jest estrapolowany (liniowo, rzadziej inną funcją ciągłą), odejmowany od szeregu czasowego indesu giełdowego, a pozostała reszta tratowana ja stacjonarny proces stochastyczny [5], często sprowadzany do tzw. białego szumu:.. [ Y f ( t)] N [ O, σ ] gdzie f (t) funcja trendu oreślona na przedziale czasowym (dysretnym),.2. t [t t n t n + ] gdzie: t t n czas przeszły, t n chwila obecna, wyprzedzenie prognozy. N[O, ] rozład normalny o wartości oczeiwanej O i wariancji niezależnej od czasu. Y Y(t) szereg czasowy indesu giełdowego. Niezależna zmienna czasowa t zwyle zmienia się co jeden dzień. Najczęściej jedna prognozy ilościowe indesów giełdowych wyorzystują autoorelacje szeregu czasowego i budowane są w oparciu o modele wygładzania wyładniczego. W wielu przypadach dają one zadowalające wynii (na przyjętym poziomie ufności) np. [6]. W nietórych jedna stanowią niepotrzebne obciążenie, sprowadzające rzecz do prognozy naiwnej typu: jutro będzie to samo co dzisiaj (np. [3]; str. 36, przyład 3.7.2). W wyżej przytoczonym przyładzie współczynni α 0,6, w prostej metodzie Browna, jest źle dobrany (metodami Montecarlo?) Minimum funcji błędu: n.3. S( α) [ y t y t ( α)] 2 n t Praca opubliowana w Zeszytach Nauowych Wyższej Szoły Działalności Gospodarczej w Warszawie. Nr 5, 2005.
2 α [0, ]. Znaiem oznaczono wartość prognozowaną. osiągane jest na granicy przedziału, dla wartości α. Sprowadza to prognozę do modelu:.4. y yt t + W tym przypadu model wygładzania wyładniczego z jednym parametrem w ogóle nie powinien być stosowany. Najlepsze rezultaty prognostyczne otrzymuje się modelami autoregresyjnymi typu ARMA i ARIMA ([2], [6]), tóre uwzględniają na złożonym poziomie ufności ciąg opóźnień zmiennej losowej, w omawianym przypadu indesu giełdowego. Nasuwa się pytanie, czy modeli tych dobrze opracowanych eonometrycznie i znajdujących się w standardowych paietach programowych nie można by wyorzystać jeszcze efetywniej? Wydaje się, że ta ja iedyś zrobiono to ze światłem białym, rozładając je na widmo spetralne, można by coś podobnego zrobić z notowaniami paietu acji (a nawet wszystimi acjami np. 99%), na wybranym rynu finansowym. Niniejsza praca jest próbą taiego właśnie podejścia. Wyorzystuje szeregi czasowe notowań poszczególnych acji (np. wiodących), sorelowane ze sobą, siłą rzeczy, działania jednego rynu finansowego. Szeregi te są przeształcane na szeregi ortogonalne tzn. niezależne od siebie (niesorelowane). Do ażdego z tych syntetycznych szeregów, tórych może być stosunowo niewiele (np. 3, 4, ), można zastosować modele ARMA i ARIMA, albo nawet prostsze wygładzania wyładniczego a potem znowu przejść na zwyłe notowania giełdowe acji poszczególnych firm. W dalszej części przedstawiony zostanie model matematyczny taiej operacji, oparty na prostej algebrze liniowej uwzględniający wartości własne macierzy wadratowych. (Niestety, nie uwzględnia tego program nauczania matematyi na ierunach eonomicznych). Studenci ostatnich lat eonometrii nie powinni mieć trudności ze zrozumieniem modelu. 2. SZCZEGÓŁOWY MODEL MAEMAYCZNY Historyczne (przeszłe) notowania wybranego paietu acji (np. w zł) zestawiamy w postaci tablicy tworzącej prostoątną macierz o n olumnach (zmienna czasowa) i wierszach (zmienna indesująca spółi giełdowe). Macierz tą oznaczamy ja następuje 2.. X n n 2n n przy czym n > 2
3 gdzie ij cena acji i-tej firmy w j-tym dniu. W dalszym ciągu przeprowadzimy standaryzację zmiennych losowych. (Nie jest to jedna onieczne). Przeształcamy zmienną losową w nową zmienną y według wzoru 2.2. y ij ij i S i i, 2 j,2 n gdzie: i wartość średnia szeregu czasowego (j, 2, n) dla i-tej zmiennej; S i pierwiaste ze średniego wadratowego odchylenia dla tej samej zmiennej. Symbolicznie: X n Y n Dalej mamy: 2.3. Yn Y K [ ρi l] gdzie K jest wadratową i symetryczną macierzą orelacji zmiennych y i, ρ il współczynniiem orelacji pomiędzy zmiennymi y i i y l (i, l, 2 ). Symbolem oznaczono transpozycję macierzy. Jest oczywiście: ρ ii ; ρ il ρ li Własności funcji własnych pozwalają na utworzenie następującego równania macierzowego (np. [] str. 46). 2.4a. K R λ R lub 2.4b. R K R λ Wyładniiem oznaczono macierz odwrotną do danej macierzy wadratowej, gdzie: R macierz wetorów własnych; λ diagonalna macierz wartości własnych macierzy wadratowej K. Oreślimy teraz nowe szeregi czasowe posługując się operacją: 2.5. n AYn gdzie A jest pewną macierzą (operatorem) przeształcenia, chwilową nieznaną. Dla macierzy wadratowej i symetrycznej jaą jest np. macierz współczynniów orelacji wetory własne są ortogonalne tzn. spełnione jest równanie: 2.6. R R I lub R R I 3
4 gdzie: I jest diagonalną macierzą jednostową. Wynia to natychmiast ze wzoru 2.4b. jest bowiem: K K i dalej (R K R) λ R (R K) λ R K(R ) λ a stąd R R co jest waruniem ortogonalności. Dalej doprowadzimy do sytuacji, w tórej szeregi czasowe n byłyby niezależne liniowo (niesorelowane) czyli aby spełniona była zależność: 2.7. n I W dalszym ciągu do równania 2.7 wstawiamy zależność 2.5, biorąc również pod uwagę, że: n ny A (transpozycja prawej strony zależności 2.5) Otrzymuje się: 2.8. A Yn Y A I Korzystając dalej ze wzorów 2.3. i 2.4 z równania 2.8 otrzymuje się: 2.9. A R λ R A I Jeżeli za niewiadomą macierz A (operator przeształcenia) przyjmiemy: A λ R 2 gdzie λ jest diagonalną macierzą odwrotności pierwiastów z wartości własnych λ i ; i, 2 Jest również: A R λ (transpozycja prawej strony zależności 2.0) bo dla macierzy diagonalnych mamy: 4
5 ( λ 2 ) 2 λ Ostatecznie po podstawieniu do równania 2.9 zależności 2.0 i 2., otrzymuje się: 2.2. λ 2 R R λ R R λ 2 I oraz dalej (po wyonaniu działań na lewej stronie 2.2, z uwzględnieniem 2.6) I I co dowodzi, że macierz oreślona wzorem ogólnym 2.0 jest rozwiązaniem równania 2.8. Równanie 2.5 może być również rozwiązane względem Y n 2.3. Yn A n Aby znaleźć elementy macierzy A zauważymy, że równanie 2.4b można przeształcić następująco: 2.4. K R R λ 0 (mnożąc prawostronnie przez R ) co prowadzi do uładu równań jednorodnych pierwszego stopnia względem współczynniów r j : 2.5. ( ij λ δij ) r j j 0 gdzie δ ij funcja Kroneera (δ ij dla i j δ ij 0 dla i j); ij, 2 pozwalających na obliczenie współczynniów r j zależnych od stałych parametrów. Parametry te można obliczyć z warunu ortogonalności 2.6. R R I Jest to uład równań 2-go stopnia względem współczynniów r j i do dalszych obliczeń można wyorzystać jedynie przeątną główną. 3. OGRANICZENIE MODELU Ja wynia z tou rozumowania przytoczonego w rozdziale 2, onieczne jest spełnienie następujących warunów: 3.. Wielomian charaterystyczny macierzy orelacji powinien posiadać różnych pierwiastów, stanowiących zbiór wartości własnych: λ, λ 2 λ 5
6 3.2. Wszystie wartości własne muszą być dodatnie, co bezpośrednio wynia ze wzoru 2.0, rozdziału 2. Być może metodę tę można będzie zastosować w dziedzinie liczb zespolonych, bo przeształcenie odwrotne (wzór 2.3 rozdział 2) zapewni powrót do liczb rzeczywistych. W tym przypadu pozostałoby jedynie -sze ograniczenie. 4. PRZYKŁAD OBLICZENIOWY Pomijając same szeregi czasowe, jao rzecz szeroo omówioną w najnowszej literaturze przedmiotu (np. [2], [4], [6]), przyjmiemy dla 3 następującą macierz orelacji: 4.. 3K 3 0,5 0,3 0,5 0,7 0,3 0,7 z wielomianu charaterystycznego 4.2. ( λ) 3 0,83( λ) + 0,2 0 Otrzymuje się następujące wartości własne λ 0,26264 λ 2 0, λ 3 2,07983 są zatem spełnione waruni 3. i 3.2 z rozdziału 3. Macierz wetorów własnych oznaczmy ja następuje 4.4. a 3R 3 d g b e h c f i Rozwiązanie uładu 9-ciu równań jednorodnych 2.5, po eliminacji trzech równań jao liniowo zależnych, daje wartości tej macierzy: ,434 α 3R 3,2438α α,54764β 0,26435β β,09246γ,097036γ γ Elementy tej macierzy zależą od trzech dowolnych parametrów: α; β i γ. Z trzech równań dla przeątnej głównej z zależności 2.6 otrzymuje się jedna: 6
7 4.6. zero: α ± 0, β ± 0, γ ± 0, Sprawdzamy jeszcze równanie dla elementu i 2 (2.6), tóry powinien być równy αβ ( 0,434,54764,2438 0, ) 2,84 0 Zatem postulat ten jest spełniony z doładnością do 5-go rzędu. Ostatecznie z zależności 2.0 macierz (operator) przeształcenia trzech szeregów czasowych w szeregi liniowo niezależne przedstawia się następująco: A 3 3 λ 2 3 R 3 0, , , ,420 0, ,537209, , , , , , Macierz (operator) przeształcenia odwrotnego wzór 2.3 oreśla wzór: A 3 0, ,738 0, , ,270477, ,4364 0, , UWAGI KOŃCOWE Przy dzisiejszym rozwoju techni obliczeniowych, przedstawiony wyżej model, nawet dla dużej liczby acji i długich szeregów czasowych, nie przedstawia więszych problemów rachunowych. Wyorzystuje on informacje historyczne jaie zawierają powiązania pomiędzy spółami emitującymi acje na tej samej giełdzie. Można go również potratować jao deompozycję -wymiarowego szeregu czasowego na sładowe syntetyczne. Czy przedstawiona metoda wnosi coś nowego, pomocnego przy prognozowaniu notowań acji? O tym można się będzie przeonać po przeprowadzeniu obliczeń na ilunastu przebiegach rzeczywistych. Jest to oczywiście zadanie wymagające zaangażowania pewnych środów, np. z K.B.N. 7
8 Wzory 2.5 i w onsewencji 2.3 mogą zostać ograniczone do ilu np. 5 6 wetorów własnych w ooło 90% wyjaśniających całowitą zmienność losową. Wydaje się również, że możliwe byłoby wyorzystanie tej metody do ontroli notowań acji spółe podejrzewanych o złamanie przepisów Komisji Papierów Wartościowych. LIERAURA [] Becenbach E. F.: Nowoczesna matematya dla inżynierów. Warszawa, PWN 962. [2] Kufel. (redacja): Analiza szeregów czasowych na początu XXI wieu. oruń, U.M.K [3] Malinowsi A., arapata Z.: Prognozowanie i symulacja rozwoju przedsiębiorstw. Warszawa, Wyższa Szoła Eonomiczna [4] Paradysz J.: Statystya. Wydawnictwo Aademii Eonomicznej w Poznaniu [5] Rozanow J.A.: Wstęp do teorii procesów stochastycznych. Warszawa, PWN 974. [6] Zelias A.: Prognozowanie eonomiczne. eoria, przyłady, zadania. Warszawa, PWN Autor słada podzięowanie profesorowi Stanisławowi Dembińsiemu z U.M.K. za sonsultowanie pracy i uwagi rytyczne. P.S. wrzesień, Przedstawiona praca jest adaptacją metody, tórą iedyś autor zastosował w badaniach zanieczyszczenia powietrza atmosferycznego. Metoda ta i jej numeryczne rozwinięcie (na maszynie cyfrowej ODRA) zostało dobrze ocenione przez prof. dr Jamesa L. McElroya z U.S.A. (zał. ; page 3, rozd. 9; page 5, p-t 4.5) 8
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o
Bardziej szczegółowoDRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Bardziej szczegółowoMODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH
MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa
Bardziej szczegółowo( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
Bardziej szczegółowoA. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
Bardziej szczegółowo13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE
Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym
Bardziej szczegółowoModelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne
Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez
Bardziej szczegółowoWAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
Bardziej szczegółowoZaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)
Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij
Bardziej szczegółowoIndukcja matematyczna
Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,
Bardziej szczegółowoĆw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Bardziej szczegółowoAlgebra liniowa z geometrią analityczną
WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór
Bardziej szczegółowoDSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH
DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość
Bardziej szczegółowoMetody probabilistyczne Rozwiązania zadań
Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Bardziej szczegółowoWybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Bardziej szczegółowojednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery
Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:
Bardziej szczegółowoMateriały dydaktyczne. Matematyka. Semestr III. Wykłady
Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe
Bardziej szczegółowoRównanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
Bardziej szczegółowoSygnały stochastyczne
Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie
Bardziej szczegółowoWstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Bardziej szczegółowoRozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Bardziej szczegółowoĆwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci
Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie
Bardziej szczegółowoSzeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Bardziej szczegółowoZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH
Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoWyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze
Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoPodstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowo4. Weryfikacja modelu
4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.
Bardziej szczegółowoWYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowo2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Bardziej szczegółowoOptymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
Bardziej szczegółowoMetoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 )
MATEMATYKA STOSOWANA 7, 2006 Izabella Czochralsa (Warszawa) Metoda rozwiązywania uładu równań liniowych z symetryczną, nieoreśloną macierzą współczynniów ( 0 ) Streszczenie. W pracy zaadaptowano opracowaną
Bardziej szczegółowoσ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Bardziej szczegółowoWykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoMetody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna
Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba
Bardziej szczegółowoMatematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
Bardziej szczegółowoBadanie stacjonarności szeregów czasowych w programie GRETL
Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoWłasności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Bardziej szczegółowoMateriały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.
ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowo3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Bardziej szczegółowoDrugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowo1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Bardziej szczegółowoMetody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera
Bardziej szczegółowoAnaliza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Bardziej szczegółowoGrupowanie sekwencji czasowych
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
Bardziej szczegółowoJEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Bardziej szczegółowoDB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Bardziej szczegółowoZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH
P I O T R DUDZIŃSKI ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH GDYNIA 2003 Piotr Dudziński, Zadania z matematyki dla studentów kierunków ekonomicznych, Gdynia 2003, s. 84, bibliografia
Bardziej szczegółowo(u) y(i) f 1. (u) H(z -1 )
IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:
Bardziej szczegółowoProces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
Bardziej szczegółowo18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.
1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową
Bardziej szczegółowoWYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI
Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoL A TEX krok po kroku
L A TEX krok po kroku Imię i nazwisko Spis treści 1 Sekcja pierwsza 1 1.1 Lista numerowana.......................... 1 2 Wymagania podstawowe 2 2.1 Lista numerowana.......................... 2 3 Troszkę
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom
Bardziej szczegółowo0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Bardziej szczegółowoRównania różniczkowe liniowe II rzędu
Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko
Bardziej szczegółowoRozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,
Bardziej szczegółowoArkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
Bardziej szczegółowoKOLOKWIUM Z ALGEBRY I R
Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane
Bardziej szczegółowoTemat ćwiczenia: POMIARY W OBWODACH ELEKTRYCZNYCH PRĄDU STAŁEGO. A Lp. U[V] I[mA] R 0 [ ] P 0 [mw] R 0 [ ] 1. U 0 AB= I Z =
Laboratorium Teorii Obwodów Temat ćwiczenia: LBOTOM MD POMY W OBWODCH LKTYCZNYCH PĄD STŁGO. Sprawdzenie twierdzenia o źródle zastępczym (tw. Thevenina) Dowolny obwód liniowy, lub część obwodu, jeśli wyróżnimy
Bardziej szczegółowoPomiary napięć przemiennych
LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych
Bardziej szczegółowoNastępnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoUkłady równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoWykres linii ciśnień i linii energii (wykres Ancony)
Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia
Bardziej szczegółowoMODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M1 Nazwa w języku angielskim ALGEBRA M1 Kierunek studiów (jeśli dotyczy): Matematyka Stopień studiów
Bardziej szczegółowoZadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Bardziej szczegółowoRozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowo... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
Bardziej szczegółowoOptymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
Bardziej szczegółowoUkłady równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M2 Nazwa w języku angielskim ALGEBRA M2 Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli
Bardziej szczegółowo= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Bardziej szczegółowo