WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA

Save this PDF as:
 WORD  PNG  TXT  JPG
Wielkość: px
Rozpocząć pokaz od strony:

Download "WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA"

Transkrypt

1 WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA 1. Proble przydziału. Należy przydzielić zadań do wykonawców. Każde zadanie oże być wykonywane przez co najwyżej jednego wykonawcę i jeden wykonawca oże wykonywać co najwyżej jedno zadanie. Z wykonanie zadania i przez wykonawcę j związany jest pewien koszt c. Należy dokonać takiego przydziału, aby koszt wykonania był najniejszy. Min : z = ogr. : j = 1 i= 1 i= 1 j = 1 x = 1 x = 1 c x i = 1.. *) j = 1.. **) 1- zadanie i przydzielono do wykonawcy j x = 0 - w p.p. *) ograniczenie po wszystkich wykonawcach **) ograniczenie po wszystkich zadaniach x - zienne decyzyjne, oznaczające przydział (1) lub brak przydziału (0) zadania i do wykonawcy j. Ograniczenia gwarantują to, że każde zadanie zostanie wykonane. Zadanie przydziału jest zadanie zerojedynkowego prograowania liniowego. 2. Algoryt etody węgierskiej Macierz A (standardowo: wiersze - wykonawcy, koluny zadania, choć ożna algoryt stosować też układ jest odwrotny nie a to wpływu na działanie etody) - algoryt stosowany jest dla inializacji funkcji celu; jeśli chcey aksyalizacji to w acierzy A zienia się znaki na przeciwne ( Max z = i= 1 j= 1 ( c ) x ziana kosztów na ( c ) i liczyy Min ); - jeśli liczba wykonawców i liczba zadań jest różna, to acierz A uzupełnia się do acierzy kwadratowej zerai; - jeśli istnieje przydział zakazany (np. zadanie nr 1 do wykonawcy nr 2) to w odpowiednie iejsce w acierzy wstawia się znak. Przykład 1: Krok 1: Jeśli inialny eleent w wierszu i jest różny od 0 to odej go od tego wiersza (krok powtórz dla wszystkich wierszy) Krok 2: Jeśli inialny eleent w kolunie jest różny od zera to odej go od tej koluny (krok powtórz dla wszystkich kolun). Krok 3: W wierszu zawierający dokładnie jedno nie naznaczone 0 naznacz je sybole 0. Skreśl inne zera w tej kolunie aby nie powtórzyć przydziału wykonawcy

2 Krok 4: W kolunie zawierającej dokładnie jedno nie naznaczone 0, naznacz je sybole 0. Skreśl pozostałe zera w odpowiedni wierszu aby nie powtórzyć przydziału tego saego zadania. Krok 5: Powtarzaj krok 3 i 4 do oentu, gdy: a) każdy wiersz w A a przydział 0 albo b) w dwóch wierszach i kolunach są co najniej 2 nie naznaczone zera albo c) nienaznaczonych zer nie a i nie dokonano kopletnego przydziału. Krok 6: Jeżeli w kroku 5 było: a) przydział jest kopletny i optyalny, zakończ; b) naznacz sybole 0 dowolne nie naznaczone 0 (zazwyczaj naznacza się 0 najbardziej północno-zachodnie) i skreśl pozostałe zera w odpowiedni wierszu i kolunie; c) przejdź do kroku 7; Krok 7: Oznacz sybole wiersz, w który nie dokonano przydziału. Krok 8: Oznacz sybole kolunę, która a zero w oznaczony wierszu. Krok 9: Oznacz nie oznaczone wiersze, które ają przydział w oznaczonych kolunach Krok 10: Powtarzaj kroki 8 i 9 aż do wyczerpania ożliwości oznaczania. Krok 11: Pokryj liniai nie oznaczone wiersze i oznaczone koluny Krok 12: Znajdź inialny niepokryty eleent i odej go od niepokrytych wierszy. Dodaj ten sa eleent do każdej pokrytej koluny. Wróć do kroku 3. Rozwiązanie końcowe dla powyższego przykładu: Optyalny przydział dla rozważanego przykładu został osiągnięty: Przy taki przydziale zadań do wykonawców łączny koszt wykonania wynosi 28 i jest inialny (żeby odczytać koszt, odwołujey się do oryginalnej acierzy na wejściu etody). Z * = = 28 Wykonawca Zadanie Koszt

3 Przykład 2: Jeśli liczba linii pokrywających wszystkie zera jest równa liczbie naznaczonych zer, to znajdź inialny niepokryty eleent, odej go od niepokrytych (zaznaczonych) wierszy i dodaj do pokrytych (zaznaczonych) kolun, po czy wróć do kroku 3. W przeciwny razie przejdź do kroku 13. Krok 13: W1 Z1 Skonstruuj graf skierowany o 2+2 S W2 Z3 T wierzchołkach: s, w1,,wn, z1,,zn, t. Dla każdego naznaczonego zera (0) o współrzędnych (i,j) utwórz łuk zj wi; W4 Z4 dla zer skreślonych ( 0 ) o współrzędnych (i,j) - łuk wi zj; dla wierszy i bez przydziału - łuk s wi; dla kolun j bez przydziału łuk zj t. Krok 14: Z otrzyanego grafu utwórz sieć warstwową: do pierwszej warstwy wstaw wierzchołek s, do warstwy i+1 wstaw każdy wierzchołek, którego nie a w warstwie wcześniejszej, i do którego dochodzi łuk z dowolnego wierzchołka warstwy i. W ostatniej warstwie znajdzie się wierzchołek t. S W4 Z1 W1 Z3 W2 Z4 T Krok 15: Przesuwając się po dowolnej ścieżce od s do t utwórz tzw. ścieżkę powiększającą przepływ. Naznacz ( ) zera skreślone o współrzędnych (i,j), odpowiadające łukowi wi zj na tej ścieżce; cofn ( 0 ) przydział zer naznaczonych o współrzędnych (i,j), odpowiadających łukowi zj wi na tej ścieżce. Jeśli znaleziono przydział do zer, to jest on optyalny STOP. S W4 Z1 W1 Z3 W2 Z4 T Wykonawca Zadania Koszt Z*= =24-3 -

4 Przykład 3: Minializacja kosztu (jeśli konflikt skreśl 0 N-W (najniejszy wiersz, pote koluna)) Ostatecznie: I 3, II 4, III 5, IV 2, V 1, łączny koszt = =22 Przykład 4: Minializacja (wynik łatwo przewidzieć, ale dla poćwiczenia rysowania sieci warstwowej przykład jest bardzo cenny ; jeśli konflikt skreśl 0 N-W (najniejszy wiersz, pote najniejsza koluna))

5 Zadania (jedno z nich będzie na kolokwiu; dla ułatwienia w nawiasie podany jest optyalny wynik (tyko funkcja celu, bez przydziału)): Minializacja kosztu: (opt=17) Maksyalizacja zysku: (opt=26) Maksyalizacja zysku: (opt=44) Maksyalizacja zysku: (opt=38) Minializacja kosztu: (opt=22) Minializacja kosztu: (opt=14) Minializacja kosztu: (opt=22) Minializacja kosztu: (opt=25)

Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej

Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej Wspomaganie Decyzji Roman Słowiński Zakład Inteligentnyc Systemów Wspomagania Decyzji Instytut Informatyki Politecniki Poznańskiej Roman Słowiński Problem decyzyjny Istnieje cel lub cele do osiągnięcia

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1. Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik

Bardziej szczegółowo

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

Metody numeryczne. materiały do ćwiczeń dla studentów. 1. Teoria błędów, notacja O

Metody numeryczne. materiały do ćwiczeń dla studentów. 1. Teoria błędów, notacja O Metody nueryczne ateriały do ćwiczeń dla studentów 1. Teoria błędów, notacja O 1.1. Błąd bezwzględny, błąd względny 1.2. Ogólna postać błędu 1.3. Proble odwrotny teorii błędów - zasada równego wpływu -

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

2. Szybka transformata Fouriera

2. Szybka transformata Fouriera Szybka transforata Fouriera Wyznaczenie ciągu (Y 0, Y 1,, Y 1 ) przy użyciu DFT wyaga wykonania: nożenia zespolonego ( 1) razy, dodawania zespolonego ( 1) razy, przy założeniu, że wartości ω j są już dane

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

MECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych

MECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych Dana kratownica: Olga Kopacz, Ada Łodygowski, ojciech Pawłowski, Michał Płotkowiak, Krzysztof Typer Konsultacje naukowe: prof. dr hab. JERZY RAKOSKI Poznań 00/00 MECHANIKA BUDOLI Linie wpływu sił w prętach

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

Modele sieciowe. Badania operacyjne Wykład 6. prof. Joanna Józefowska

Modele sieciowe. Badania operacyjne Wykład 6. prof. Joanna Józefowska Modele sieciowe Badania operacyjne Wykład 6 6-6- 6-6- Plan wykładu Zarządzanie złożonymi przedsięwzięciami Metoda ścieżki krytycznej Metoda PERT Projekty z ograniczonymi zasobami Modele z kontrolą czasu

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do

Bardziej szczegółowo

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1 BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone prograowanie produkcji z wykorzystanie etody

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Stateczność ramy drewnianej o 2 różnych przekrojach prętów, obciążonej siłą skupioną

Stateczność ramy drewnianej o 2 różnych przekrojach prętów, obciążonej siłą skupioną Stateczność ray drewnianej o różnych przekrojach prętów, obciążonej siłą skupioną ORIGIN - Ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - Moduł Younga drewna Wyiary przekrojów a 7c b 7c a

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz: Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

M1 M2 M3 Jednostka produkcyjna W1 6h 3h 10h h/1000szt 2zł W2 8h 4h 5h h/100szt 25zł Max. czas pracy maszyn:

M1 M2 M3 Jednostka produkcyjna W1 6h 3h 10h h/1000szt 2zł W2 8h 4h 5h h/100szt 25zł Max. czas pracy maszyn: Zad. Programowanie liniowe Jakiś zakład produkcyjny, ma 3 różne maszyny i produkuje różne produkty. Każdy z produktów wymaga pewnych czasów każdej z 3ch maszyn (podane w tabelce niżej). Ile jakiego produktu

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

- 1 - STATYSTYCZNY ANALIZATOR RULETKI (SAR) Główne obliczenia

- 1 - STATYSTYCZNY ANALIZATOR RULETKI (SAR) Główne obliczenia - 1 - STATYSTYCZNY ANALIZATOR RULETKI (SAR) - 1.2 Główne obliczenia Spis treści: Wstęp - uzasadnienie 1.Wykorzystanie rozkładu Dirichleta. 2.Testowanie koła ruletki. 3.Podstawowe paraetry statystyczne

Bardziej szczegółowo

[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.

[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Wymagania programowe w porządku związanym z realizacją programu

Wymagania programowe w porządku związanym z realizacją programu Wymagania programowe w porządku związanym z realizacją programu Nazwa umiejętności UCZEŃ POTRAFI: Poziom wymagań Kategoria celu 1. Porównać dwie liczby całkowite. K C 2. Uporządkować liczby całkowite.

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Stany równoważne Stany p i q są równoważne,

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania

Bardziej szczegółowo

Lista 0. Kamil Matuszewski 1 marca 2016

Lista 0. Kamil Matuszewski 1 marca 2016 Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2 1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x

Bardziej szczegółowo

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych

Bardziej szczegółowo

Harmonogramowanie przedsięwzięć

Harmonogramowanie przedsięwzięć Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu

Bardziej szczegółowo

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Metody eksploracji danych 6. Klasyfikacja (kontynuacja)

Metody eksploracji danych 6. Klasyfikacja (kontynuacja) Metody eksploracji danych 6. Klasyfikacja (kontynuacja) Piotr Szwed Katedra Inforatyki Stosowanej AGH 2016 Support Vector Machines k-nearest Neighbors Support Vector Machines Maszyny Wektorów Wspierających

Bardziej szczegółowo

Licytacja działek budowlanych

Licytacja działek budowlanych Licytacja działek budowlanych Jakiś czas temu na stronie WWW pewnego urzędu gminy pojawiło się następujące ogłoszenie: Urząd Gminy Szachownica ogłasza przetarg na zakup działek budowlanych i zaprasza wszystkich

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Interpolacja. Interpolacja wykorzystująca wielomian Newtona

Interpolacja. Interpolacja wykorzystująca wielomian Newtona Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

I V X L C D M. Przykłady liczb niewymiernych: 3; 2

I V X L C D M. Przykłady liczb niewymiernych: 3; 2 1 LICZBY Liczby naturalne: 0; 1; 2; 3;.... Liczby całkowite:...; -3; -2; -1; 0; 1; 2; 3;.... Liczbą wymierną nazywamy każdą liczbę, którą można zapisać w postaci ułamka a b, gdzie a i b są liczbami całkowitymi,

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Użycie przestrzeni papieru i odnośników - ćwiczenie

Użycie przestrzeni papieru i odnośników - ćwiczenie Użycie przestrzeni papieru i odnośników - ćwiczenie Informacje ogólne Korzystanie z ćwiczeń Podczas rysowania w AutoCADzie, praca ta zwykle odbywa się w przestrzeni modelu. Przed wydrukowaniem rysunku,

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

O KOSZTACH REALIZACJI PLANÓW EKSPERYMENTÓW CZYNNIKOWYCH

O KOSZTACH REALIZACJI PLANÓW EKSPERYMENTÓW CZYNNIKOWYCH Studia Ekonoiczne. Zeszyty Naukowe Uniwersytetu Ekonoicznego w Katowicach ISSN 08-86 Nr 9 05 Magdalena Chielińska Uniwersytet Ekonoiczny w Katowicach Wydział Zarządzania Katedra Statystyki chielinska.agda@gail.co

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

Opis wymagań do programu Matematyka klasa VI

Opis wymagań do programu Matematyka klasa VI Opis wymagań do programu Matematyka 2001 - klasa VI Cele ogólne wytyczają kierunki pracy z uczniami, zaś cele szczegółowe są opisem osiągnięć uczniów w wyniku kształcenia na danym przedmiocie i etapie

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo