WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
|
|
- Jarosław Zieliński
- 5 lat temu
- Przeglądów:
Transkrypt
1 WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu zadanego w postaci obrazu Pewne problemy związane z wypełnianiem Rysowanie pogrubionych tworów pierwotnych położenie przecięć położenie 3 przecięcia położenie 3 przecięć położenie? przecięć 3 lgorytm przeglądania linii ( (scan line algorithm) Założenie: any jest wielobok ( bez krawędzi poziomych ) opisany jako zbiór kolejnych krawędzi. krawędź y max Opis geometrii wieloboku x min x max Podstawowa zasady działania algorytmu: Przesuwać poziomą linię skanującą od dołu do góry. la danego położenia linii należy rysować punkty pomiędzy poszczególnymi parami krawędzi y = 0 la linii skanującej w położeniu y = 0 należy wypełnić punkty (narysować poziome odcinki) pomiądzy krawędziami i oraz i.
2 Opis algorytmu: Krok 0 Utworzyć globalną tablicę krawędzi (T). Krok Ustawić y na najmniejszej wartości współrzędnej y z globalnej tablicy krawędzi (T), czyli y dla pierwszej niepustej grupy krawędzi Krok Wyzerować aktywną tablicę krawędzi (T). Przenieść z grupy y tablicy globalnej (T) do tablicy aktywnej (T) te krawędzie, dla których = y i posortować je ze względu na x. Wypełnić piksele w linii y, wykorzystując pary x z tablicy aktywnej (T). Usunąć z tablicy aktywnej (T) te krawędzie, dla których y = max. y = y max Zwiększyć y o (następna linia). la każdej pary krawędzi, która nie jest pionowa wyliczyć i wstawić do tablicy aktywnej (T) nowe wartości x. Krok 3 Powtarzać tak długo, dopóki tablica globalna (T) i tablica aktywna (T) nie będą puste. Tablica globalna (T) krawędzie Tablica aktywna (T) Krok 0 - Tworzenie globalnej tablicy krawędzi (T) 0 -/ * 0 * 0 * -/ * y max x /a /3 * / * minimum minimum x min minimum y max minimum x max przypisanie do grupy - porządkowanie w grupie - porządkowanie w grupie max - porządkowanie w grupie Krok Ustawiamy y na najmniejszej wartości współrzędnej y z globalnej tablicy krawędzi. y = Krok Zerujemy aktywną tablicę krawędzi (T). Krok 3 Przenosimy z grupy y tablicy globalnej (T) do tablicy aktywnej (T) te krawędzie, dla których = y i sortujemy krawędzie ze względu na x. (T) ymin 0 -/ * / * ymax x /a
3 Wypełniamy piksele w linii y, wykorzystując pary x z tablicy aktywnej (T) i zasadę parzystości y = Usuwamy z tablicy aktywnej (T) te krawędzie, dla których, y = y max ( brak takich krawędzi ) Zwiększamy y o ( o ( y = ). la każdej pary krawędzi, która nie jest pionowa wyliczamy i wstawiamy do tablicy aktywnej (T) nowe wartości x. Sposób obliczania nowych wartości x ; (T) x ( y ) = x( y ) + a a) ( algorytm ) b) algorytm resenhama ymin -/ * 0 / * ymax x /a Koniec pierwszego przebiegu dla kroku 3 W kolejnym przebiegu kroku 3 uzyskamy rysunek : la y = rysunek wygląda następująco: y = Postępujemy analogicznie aż do osiągnięcia y = y = la krawędzi zachodzi y = y max ( koniec krawędzi ). Usuwamy z tablicy aktywnej (T). Przenosimy do tablicy aktywnej z tablicy globalnej (T) krawędź, dla której = y. Porządkujemy tablicę (T) ze względu na x. Tablica aktywna przybiera postać: 3
4 (T) ymin 0 * / * ymax x /a Kontynuujemy wypełnianie aż osiągniemy koniec krawędzi występującej w tablicy aktywnej 0 (T), lub początek krawędzi z tablicy globalnej (T). W rozważanym przypadku dla y =, osiągamy koniec krawędzi. Uzyskany efekt wypełnienia pokazuje rysunek Po usunięciu z tablicy aktywnej (T) krawędzi, zwiększeniu y i przeniesieniu z tablicy globalnej (T) krawędzi tablica aktywna przyjmuje postać: (T) 0 * 0 * Wypełniając dalej, osiągamy wartość y =.Rysunek wygląda Wypełniając dalej, osiągamy wartość następująco: Stwierdzamy, że dla y = para krawędzi i spełnia Stwierdzamy, że dla para krawędzi i spełnia warunek = y W związku z tym przenosimy krawędzie i do tablicy aktywnej (T), która po uporządkowaniu elementów ze względu na x wygląda tak: (T) 0 * -/ * /3 * 0 * Tablica globalna (T) staje się pusta. Kontynuujemy wypełnianie między parami krawędzi z tablicy (T), aż do osiągnięcia y =. Uzyskujemy efekt jak na następnym rysunku: Usuwamy z tablicy (T) parę krawędzi,. (T) /3 * 0 *
5 Wypełniamy następną linię i osiągamy końce krawędzi i. Usuwany krawędzie z tablicy T. Tablica (T) jest już pusta, czyli kończymy wypełnianie. Ostateczny efekt pokazuje rysunek Problem krawędzi poziomych: Na początku, przyjęto założenie, że wypełniany wielobok nie ma krawędzi poziomych. Jak pozbyć się tego założenia? G Rozwiązanie: Pomijanie krawędzi poziomych w tablicy (T). Przykłady: - w tablicy (T) znajdzie się J i, - w tablicy (T) znajdzie się IJ i, 3 - w tablicy (T) znajdzie się IJ i, - w tablicy (T) znajdzie się GH i, J I H 3. Wypełnianie konturu zadanego jako obraz Prosty algorytm wypełniania konturu wypukłego Założenie: any jest kontur w postaci zbioru różnych od tła pikseli i punkt leżący wewnątrz konturu. x 0 Przypadek gdy kontur jest wypukły: la dowolnej pary punktów x, x leżących wewnątrz konturu odcinek, którego końcami są te punkty leży w całości wewnątrz konturu. x x wypełniamy w linii poczynając od punktu startowego, aż do prawej granicy konturu, znajdujemy " niższy " punkt konturu i wypełniamy linię do lewej granicy konturu, powtarzamy tak długo, dopóki możemy znaleźć punkt " niższy ", wracamy do punktu startowego i kontynuujemy proces poruszając się " w górę ".
6 Przypadek gdy kontur nie jest wypukły: lgorytm wypełniania przez spójność 3. Pewne problemy wypełniania Problem brzegu wieloboku: Trzeba narysować kilka wypełnionych wieloboków o wspólnych krawędziach. Każdy z wieloboków jest wypełniony innym kolorem. ziarno ziarno sąsiad W W W W W W. Wypełniane jest ziarno,. Sprawdzani są kolejno sąsiedzi, jeżeli sprawdzany sąsiad nie należy do konturu, przyjmowany jest jako nowe ziarno i następuje powrót do punktu. W piksel Jak rysować obrazy krawędzi wieloboków? W Problem wieloboków "bardzo wąskich" : W W W W W W W W piksele kandydaci piksele wypełnione zęsto stosowane rozwiązanie: rysować piksele leżące wewnątrz wieloboku, ale nie na brzegu, rysować piksele należące do lewej krawędzi, rysować piksele należące do dolnej krawędzi. W Zastosowano poprzednio opisaną konwencję rysowania. Obraz wieloboku W składa się tylko z dwóch punktów. rak zadawalającego rozwiązania przy tym sposobie rysowania. Należy zastosować wypełnianie wielotonowe. W
7 . Rysowanie pogrubionych tworów pierwotnych Metoda powielania pikseli : Metoda powielania pikseli dla krzywej: rysunek podstawowy piksele powielone piksele powielone rysunek podstawowy la każdego piksela rysunku podstawowego, rysowane są dodatkowe piksele pogrubiające. gdy a < w kolumnie, w przypadku przeciwnym w wierszu. Zaleta - Wada - prosty algorytm grubość rysunku dla różnych fragmentów krzywej jest różna Metoda prostokątnego pióra: ślad pióra rysowana krzywa ślad pióra porusza się wzdłuż krzywej piksel rysunku podstawowego znajduje się w centrum śladu Zaleta - lepsze niż w poprzedniej metodzie rysunki Wada - występuje powielanie pikseli
Algorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej
Algorytmy grafiki rastrowej Mirosław Głowacki Wykład z Grafiki Komputerowej Wypełnianie prymitywów Mirosław Głowacki Wykład z Grafiki Komputerowej Wypełnianie prymitywów Zadanie wypełniania prymitywów
Bardziej szczegółowoPlan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza
Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska
Bardziej szczegółowo1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający
Instrukcja laboratoryjna 3 Grafika komputerowa 2D Temat: Obcinanie odcinków do prostokąta Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1
Bardziej szczegółowow jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Bardziej szczegółowoGrafika komputerowa Wykład 2 Algorytmy rastrowe
Grafika komputerowa Wykład 2 Algorytmy rastrowe Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Algorytm Bresenhama
Bardziej szczegółowoDefinicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
Bardziej szczegółowoKGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012
Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować
Bardziej szczegółowonarzędzie Linia. 2. W polu koloru kliknij kolor, którego chcesz użyć. 3. Aby coś narysować, przeciągnij wskaźnikiem w obszarze rysowania.
Elementy programu Paint Aby otworzyć program Paint, należy kliknąć przycisk Start i Paint., Wszystkie programy, Akcesoria Po uruchomieniu programu Paint jest wyświetlane okno, które jest w większej części
Bardziej szczegółowoZadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL
Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n
Bardziej szczegółowoRysowanie precyzyjne. Polecenie:
7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na
Bardziej szczegółowo9. Podstawowe narzędzia matematyczne analiz przestrzennych
Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu
Bardziej szczegółowoGrafika Komputerowa. Algorytmy rastrowe
Grafika Komputerowa. Algorytmy rastrowe Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 23 Algorytmy rastrowe
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Bardziej szczegółowoInformatyka Edytor tekstów Word 2010 dla WINDOWS cz.3
Wyższa Szkoła Ekologii i Zarządzania Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3 Slajd 1 Slajd 2 Numerowanie i punktowanie Automatyczne ponumerowanie lub wypunktowanie zaznaczonych akapitów w
Bardziej szczegółowoInformatyka Edytor tekstów Word 2010 dla WINDOWS cz.3
Wyższa Szkoła Ekologii i Zarządzania Informatyka Edytor tekstów Word 2010 dla WINDOWS cz.3 Slajd 1 Slajd 2 Numerowanie i punktowanie Automatyczne ponumerowanie lub wypunktowanie zaznaczonych akapitów w
Bardziej szczegółowoLaboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Bardziej szczegółowoObcinanie prymitywów. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH
Obcinanie prymitywów Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Obcinanie odcinków Z reguły odcinki linii prostej muszą być obcinane przez prostokąty np. okna Wielokąty
Bardziej szczegółowoPolitechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.
Bardziej szczegółowoCo należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Bardziej szczegółowoznalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
Bardziej szczegółowoRYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska INSTRUKCJA KOMPUTEROWA z Rysunku technicznego i geometrii wykreślnej RYSUNEK TECHNICZNY
Bardziej szczegółowoWstawianie nowej strony
Wstawianie nowej strony W obszernych dokumentach będziemy spotykali się z potrzebą dzielenia dokumentu na części. Czynność tę wykorzystujemy np.. do rozpoczęcia pisania nowego rozdziału na kolejnej stronie.
Bardziej szczegółowoAlgorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Bardziej szczegółowoFUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Bardziej szczegółowoRYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z KOMINEM W 3D
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA Rok akad. 2011/2012 Semestr
Bardziej szczegółowośebro, Szyk liniowy, Lustro Zagadnienia. Tworzenie śeber, powielanie obiektów Szykiem liniowym, wykorzystanie konstrukcji Lustra.
śebro, Szyk liniowy, Lustro Zagadnienia. Tworzenie śeber, powielanie obiektów Szykiem liniowym, wykorzystanie konstrukcji Lustra. Wykonajmy model jak na rys. 1. Rysunek 1. Model wieszaka MoŜna zauwaŝyć,
Bardziej szczegółowo4. Rysowanie krzywych
1. Operator plot y x \begin{tikzpicture} \draw[->] (-0.2,0) -- (4.2,0) node[right] {$x$}; \draw[->] (0,-1.2) -- (0,4.2) node[above] {$y$}; \draw (3,4) -- (3,3) plot coordinates{(2,3) (3,0) (4,3)}; \end{tikzpicture}
Bardziej szczegółowoNarzędzia programu Paint
Okno programu Paint Narzędzia programu Paint Na karcie Start znajduje się przybornik z narzędziami. Narzędzia te są bardzo przydatne w pracy z programem. Można nimi rysować i malować, kolorować i pisać,
Bardziej szczegółowoGrafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych
Grafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści
Bardziej szczegółowoWprowadzenie do rysowania w 3D. Praca w środowisku 3D
Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać
Bardziej szczegółowoNarysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1
Narysujemy uszczelkę podobną do pokazanej na poniższym rysunku. Rys. 1 Jak zwykle, podczas otwierania nowego projektu, zaczynamy od ustawienia warstw. Poniższy rysunek pokazuje kolejne kroki potrzebne
Bardziej szczegółowoŁożysko z pochyleniami
Łożysko z pochyleniami Wykonamy model części jak na rys. 1 Rys. 1 Część ta ma płaszczyznę symetrii (pokazaną na rys. 1). Płaszczyzna ta może być płaszczyzną podziału formy odlewniczej. Aby model można
Bardziej szczegółowoZadanie 3. Praca z tabelami
Zadanie 3. Praca z tabelami Niektóre informacje wygodnie jest przedstawiać w tabeli. Pokażemy, w jaki sposób można w dokumentach tworzyć i formatować tabele. Wszystkie funkcje związane z tabelami dostępne
Bardziej szczegółowoPraktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1
Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Katarzyna Nawrot Spis treści: 1. Podstawowe pojęcia a. Arkusz kalkulacyjny b. Komórka c. Zakres komórek d. Formuła e. Pasek formuły
Bardziej szczegółowoRZUT CECHOWANY DACHY, NASYPY, WYKOPY
WYZNACZANIE DACHÓW: RZUT CECHOWANY DACHY, NASYPY, WYKOPY Ograniczymy się do dachów złożonych z płaskich wielokątów nazywanych połaciami, z linią okapu (linią utworzoną przez swobodne brzegi połaci) w postaci
Bardziej szczegółowo9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Bardziej szczegółowoZłożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Bardziej szczegółowoAlgorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej
Algorytmy grafiki rastrowej Mirosław Głowacki Wykład z Grafiki Komputerowej Konwersja odcinków Mirosław Głowacki Wykład z Grafiki Komputerowej Konwersja odcinków Algorytmy konwersji odcinków obliczają
Bardziej szczegółowoTechniki wstawiania tabel
Tabele w Wordzie Tabela w Wordzie to uporządkowany układ komórek w postaci wierszy i kolumn, w które może być wpisywany tekst lub grafika. Każda komórka może być formatowana oddzielnie. Możemy wyrównywać
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoĆwiczenie 1 Automatyczna animacja ruchu
Automatyczna animacja ruchu Celem ćwiczenia jest poznanie procesu tworzenia automatycznej animacji ruchu, która jest podstawą większości projektów we Flashu. Ze względu na swoją wszechstronność omawiana
Bardziej szczegółowo1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt.
Grafika w dokumencie Wprowadzanie ozdobnych napisów WordArt Do tworzenia efektownych, ozdobnych napisów służy obiekt WordArt. Aby wstawić do dokumentu obiekt WordArt: 1. Umieść kursor w miejscu, w którym
Bardziej szczegółowoProgram graficzny MS Paint.
Program graficzny MS Paint. Program graficzny MS Paint (w starszych wersjach Windows Paintbrush lub mspaint) aplikacja firmy Microsoft w systemach Windows służąca do obróbki grafiki. SP 8 Lubin Zdjęcie:
Bardziej szczegółowoLI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Bardziej szczegółowoLIVE Gra w życie. LIVE w JavaScript krok po kroku. ANIMACJA Rozpoczynamy od podstawowego schematu stosowanego w animacji
LIVE Gra w życie Live jest jednym z pierwszych i najbardziej znanych tzw. automatów komórkowych. Został wymyślony w 1970 roku przez brytyjskiego matematyka Johna Conwaya. Co to takiego automat komórkowy?
Bardziej szczegółowoRzuty, przekroje i inne przeboje
Rzuty, przekroje i inne przeboje WYK - Grafika inżynierska Piotr Ciskowski, Sebastian Sobczyk Wrocław, 2015-2016 Rzuty prostokątne Rzuty prostokątne pokazują przedmiot z kilku stron 1. przedmiot ustawiamy
Bardziej szczegółowoImplementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Bardziej szczegółowoVIII. USUWANIE NIEWIDOCZNYCH LINII I POWIERZCHNI
VIII. USUWANIE NIEWIDOCZNYCH LINII I POWIERZCHNI 8.1. Wprowadzenie Otrzymywanie realistycznych obrazów obiektów dwu- lub trójwymiarowych na ekranie monitora lub innych urządzeniach graficznych (na przykład
Bardziej szczegółowoPodstawy Informatyki Wykład V
Nie wytaczaj armaty by zabić komara Podstawy Informatyki Wykład V Grafika rastrowa Paint Copyright by Arkadiusz Rzucidło 1 Wprowadzenie - grafika rastrowa Grafika komputerowa tworzenie i przetwarzanie
Bardziej szczegółowoLEGISLATOR. Data dokumentu:17 września 2012 Wersja: 1.3 Autor: Paweł Jankowski
LEGISLATOR Dokument zawiera opis sposobu tworzenia tabel w załącznikach do aktów prawnych Data dokumentu:17 września 2012 Wersja: 1.3 Autor: Paweł Jankowski Zawartość Wprowadzenie... 3 Strukturalizowanie
Bardziej szczegółowoAnimowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 9 Rekurencja
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 9 Rekurencja Rekurencja z łacińskiego oznacza to przybiec z powrotem - osiągniesz rzecz wielką, jeśli zawrócisz po to, by osiągnąć rzeczy małe Przykład:
Bardziej szczegółowoRysowanie punktów na powierzchni graficznej
Rysowanie punktów na powierzchni graficznej Tworzenie biblioteki rozpoczniemy od podstawowej funkcji graficznej gfxplot() - rysowania pojedynczego punktu na zadanych współrzędnych i o zadanym kolorze RGB.
Bardziej szczegółowoKoło zębate wału. Kolejnym krokiem będzie rozrysowanie zębatego koła przeniesienia napędu na wał.
Witam w kolejnej części kursu modelowania 3D. Jak wspomniałem na forum, dalsze etapy będą przedstawiały terminy i nazwy opcji, ustawień i menu z polskojęzycznego interfejsu programu. Na początek dla celów
Bardziej szczegółowoNastępnie zdefiniujemy utworzony szkic jako blok, wybieramy zatem jak poniżej
Zadanie 1 Wykorzystanie opcji Blok, Podziel oraz Zmierz Funkcja Blok umożliwia zdefiniowanie dowolnego złożonego elementu rysunkowego jako nowy blok a następnie wykorzystanie go wielokrotnie w tworzonym
Bardziej szczegółowoZadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Bardziej szczegółowoObsługa mapy przy użyciu narzędzi nawigacji
Obsługa mapy przy użyciu narzędzi nawigacji Narzędzia do nawigacji znajdują się w lewym górnym rogu okna mapy. Przesuń w górę, dół, w lewo, w prawo- strzałki kierunkowe pozwalają przesuwać mapę w wybranym
Bardziej szczegółowoGrafika 2D. Rasteryzacja elementów wektorowych. opracowanie: Jacek Kęsik
Grafika 2D Rasteryzacja elementów wektorowych opracowanie: Jacek Kęsik Wykład obejmuje operacje rastrowe związane z wyświetleniem kształtów o ciągłych krawędziach za pomocą skończenie gęstej siatki pikseli
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń
Bardziej szczegółowoKrzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
Bardziej szczegółowoOpis Edytora postaci Logomocji
Opis Edytora postaci Logomocji Przyciski na pasku narzędzi Przyciski Wygląd Opis W Edytorze postaci można otwierać pliki o rozszerzeniach: Otwórz plik postaci lgf (plik Edytora postaci), imp (plik projektu
Bardziej szczegółowoTWORZENIE OBIEKTÓW GRAFICZNYCH
R O Z D Z I A Ł 2 TWORZENIE OBIEKTÓW GRAFICZNYCH Rozdział ten poświęcony będzie dokładnemu wyjaśnieniu, w jaki sposób działają polecenia służące do rysowania różnych obiektów oraz jak z nich korzystać.
Bardziej szczegółowoCzy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
Bardziej szczegółowoMateusz Bednarczyk, Dawid Chałaj. Microsoft Word Kolumny, tabulatory, tabele i sortowanie
Mateusz Bednarczyk, Dawid Chałaj Microsoft Word Kolumny, tabulatory, tabele i sortowanie 1. Kolumny Office Word umożliwia nam dzielenie tekstu na kolumny. Zaznaczony tekst dzieli się na wskazaną liczbę
Bardziej szczegółowoPrzykład 1 wałek MegaCAD 2005 2D przykład 1 Jest to prosty rysunek wałka z wymiarowaniem. Założenia: 1) Rysunek z branży mechanicznej; 2) Opracowanie w odpowiednim systemie warstw i grup; Wykonanie 1)
Bardziej szczegółowoGrafika Komputerowa Materiały Laboratoryjne
Grafika Komputerowa Materiały Laboratoryjne Laboratorium 6 Processing c.d. Wstęp Laboratorium 6 poszerza zagadnienie generowania i przetwarzania obrazów z wykorzystaniem języka Processing 2, dedykowanego
Bardziej szczegółowoArkusz kalkulacyjny EXCEL
ARKUSZ KALKULACYJNY EXCEL 1 Arkusz kalkulacyjny EXCEL Aby obrysować tabelę krawędziami należy: 1. Zaznaczyć komórki, które chcemy obrysować. 2. Kursor myszy ustawić na menu FORMAT i raz kliknąć lewym klawiszem
Bardziej szczegółowoGRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY Prowadzący
Bardziej szczegółowoGrafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Bardziej szczegółowoGeometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr
Bardziej szczegółowoOperacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
Bardziej szczegółowoZad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Bardziej szczegółowoZajęcia nr 3_cz2 Praca z tekstem: WORD Wzory matematyczne. Tabele
Zajęcia nr 3_cz2 Praca z tekstem: WORD Wzory matematyczne. Tabele W swoim folderze utwórz folder o nazwie 5_11_2009, wszystkie dzisiejsze zadania wykonuj w tym folderze. Na dzisiejszych zajęciach nauczymy
Bardziej szczegółowoZnajdowanie wyjścia z labiryntu
Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych
Bardziej szczegółowoRok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Bardziej szczegółowoLX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Bardziej szczegółowoOświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy
Bardziej szczegółowoPrzewodnik po obszarze roboczym
Przewodnik po obszarze roboczym Witamy w programie CorelDRAW, wszechstronnym programie do tworzenia rysunków wektorowych i projektów graficznych przeznaczonym dla profesjonalnych grafików. Projekty tworzone
Bardziej szczegółowo3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie
Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia
Bardziej szczegółowoPrzecięcia odcinków. Wykład /07
Przecięcia odcinków Wykład 2 2006/07 Problem Dane: zbiór S={s 1,...,s n } odcinków na płaszczyźnie Wynik: zbiór punktów przecięć wszystkich odcinków z S, wraz z informacją które odcinki przecinają się
Bardziej szczegółowo0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Bardziej szczegółowoRZUTOWANIE PROSTOKĄTNE
RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj
Bardziej szczegółowoProjekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Projekt graficzny z metamorfozą (ćwiczenie dla grup I i II modułowych) Otwórz nowy rysunek. Ustal rozmiar arkusza na A4. Z przybornika wybierz rysowanie elipsy (1). Narysuj okrąg i nadaj mu średnicę 100
Bardziej szczegółowoTematy lekcji informatyki klasa 4a styczeń 2013
Tematy lekcji informatyki klasa 4a styczeń 2013 temat 7. z podręcznika (str. 70-72); sztuczki 4. i 5. (str. 78); Narysuj ikony narzędzi do zaznaczania i opisz je. 19 Zaznaczamy fragment rysunku i przenosimy
Bardziej szczegółowoWYKŁAD 2 Znormalizowane elementy rysunku technicznego. Przekroje.
WYKŁAD 2 Znormalizowane elementy rysunku technicznego. Przekroje. Tworzenie z formatu A4 formatów podstawowych. Rodzaje linii Najważniejsze zastosowania linii: - ciągła gruba do rysowania widocznych krawędzi
Bardziej szczegółowoPotyczki z komputerem Kategoria B
Potyczki z komputerem 2018 Kategoria B Etap szkolny Powielanie Wczytaj scenę 0, na której przy lewej krawędzi umieszczone są elementy z dowolnego banku. Utwórz scenę 1, gdzie wczytane elementy powielisz
Bardziej szczegółowoProgramowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Bardziej szczegółowoReprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Bardziej szczegółowoEdytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wstawianie i formatowanie tabel.
Edytor tekstu MS Word 2010 PL. Edytor tekstu MS Word 2010 PL umożliwia wstawianie i formatowanie tabel. Edytor teksu MS Word 2010 PL: wstawianie tabel. Wstawianie tabeli. Aby wstawić do dokumentu tabelę
Bardziej szczegółowoZbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Bardziej szczegółowoRZUTOWANIE PROSTOKĄTNE
RZUTOWANIE PROSTOKĄTNE WPROWADZENIE Wykonywanie rysunku technicznego - zastosowanie Rysunek techniczny przedmiotu jest najczęściej podstawą jego wykonania, dlatego odwzorowywany przedmiot nie powinien
Bardziej szczegółowoGrafika komputerowa ZS Sieniawa Andrzej Pokrywka. Ścieżki cz. 2. Rysunki z kreskówek. Autor: Joshua Koudys
Ścieżki cz. 2 Rysunki z kreskówek 1. Zaczynamy od stworzenia nowego obrazka na białym tle, o wymiarach np. 500x500 px. 2. Tworzymy nową warstwę o nazwie linie pomocnicze. 3. Tworzymy Eliptyczne zaznaczenie
Bardziej szczegółowoANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM)
ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) LABORATORIUM 5 - LOKALIZACJA OBIEKTÓW METODĄ HISTOGRAMU KOLORU 1. WYBÓR LOKALIZOWANEGO OBIEKTU Pierwszy etap laboratorium polega na wybraniu lokalizowanego obiektu.
Bardziej szczegółowoAKADEMIA ŁAMANIA GŁOWY Część I KALEJDOSKOP --0--
AKADEMIA ŁAMANIA GŁOWY Część I KALEJDOSKOP W pierwszej części Akademii Łamania Głowy prezentujemy te łamigłówki, których rozwiązywania nauczycie się w następnych częściach. y są różne różne zadania, różne
Bardziej szczegółowoWIDOKI I PRZEKROJE PRZEDMIOTÓW
WIDOKI I PRZEKROJE PRZEDMIOTÓW Rzutami przedmiotów mogą być zarówno widoki przedstawiające zewnętrzne kształty przedmiotów jak i przekroje, które pokazują budowę wewnętrzną przedmiotów wydrążonych. Rys.
Bardziej szczegółowoPODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Bardziej szczegółowoZajęcia nr. 5: Funkcja liniowa
Zajęcia nr. 5: Funkcja liniowa 6 maja 2005 1 Pojęcia podstawowe. Definicja 1.1 (funkcja liniowa). Niech a i b będą dowolnymi liczbami rzeczywistymi. Funkcję f : R R daną wzorem: f(x) = ax + b nazywamy
Bardziej szczegółowoInternetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
Bardziej szczegółowoΠ 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne
2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.
Bardziej szczegółowoObcinanie grafiki do prostokąta
Obcinanie grafiki do prostokąta Tworząc różnego rodzaju grafikę komputerową bardzo szybko natrafisz na sytuację, gdy rysowane obiekty "wychodzą" poza obszar ekranu. W takim przypadku kontynuowanie rysowania
Bardziej szczegółowo