TEORIA GRAFÓW I SIECI

Wielkość: px
Rozpocząć pokaz od strony:

Download "TEORIA GRAFÓW I SIECI"

Transkrypt

1 TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT tel.: , p.225/00 Zakład Badań Operacyjnych i Wspomagania Decyzji Instytut Systemów Informatycznych Wydział Cybernetyki, Wojskowa Akademia Techniczna

2 Skojarzenia w grafach Skojarzenie grafu G = W, U, P - podgraf częściowy G I = W I, U I, P I o nieprzyległych gałęziach, bez pętli i wierzchołków izolowanych (tzn. 2 s(x) r(x) dla każdego x). Skojarzenie maksymalne - U I nie jest podzbiorem właściwym U II wyznaczającym skojarzenie. Skojarzenie najliczniejsze skojarzenie, dla którego największe z możliwych. Przydział skojarzenie grafu Königa (tzn. dwudzielnego grafu zwykłego). Skojarzenie pełne (doskonałe) każdy wierzchołek z G jest incydentny przynajmniej z jednym uu I. I U jest 2

3 Skojarzenia w grafach Skojarzenie (czerwone krawędzie) Skojarzenie maksymalne Skojarzenie najliczniejsze Skojarzenie doskonałe Skojarzenie doskonałe (inne) 3

4 U I Skojarzenia w grafach TWIERDZENIE (Hall a) W grafie dwudzielnym G (tzn. G = WW2,U,P, WW2 = oraz W, W2 tworzą podgrafy puste w G), w którym W = W2 istnieje skojarzenie pełne dla każdego podzbioru wierzchołków Z W istnieje przynajmniej Z wierzchołków w W2, które są przyległe do któregoś wierzchołka z Z. PRZYKŁAD (tzw. problem kojarzenia małżeństw) Jest n chłopców i m dziewcząt. Każdy z chłopców ocenia swoimi własnymi kryteriami każdą z dziewcząt i po takiej weryfikacji widzi ją jako potencjalną kandydatkę na żonę lub nie. Problem polega na takim przyporządkowaniu dziewcząt do chłopców, aby skojarzyć maksymalną liczbę par. n m Niemożliwe skojarzenie pełne, bo dla Z ={,3} istnieje tylko < Z wierzch oł ek w W 2, który jest p r z y l e g ł y d o k t ó r e g o ś z wierzchołków z Z d o d a t k o w a g a ł ą ź s p o w o d o w a ł a b y i s t n i e n i e skojarzenia pełnego. W W 2 4

5 Metody wyznaczania skojarzeń najliczniejszych Metoda baz minimalnych utworzyć G * (graf sprzężony grafu G) oraz wyznaczyć w G * wszystkie bazy minimalne (maksymalne zbiory wewnętrznie stabilne). Każdy maksymalny podgraf pusty grafu G * odpowiada maksymalnemu skojarzeniu w G G= G*= 3 7,6 4,8 4,7 3,5 2,8 4 8,5 2,6 2,7 Maksymalny podgraf pusty tworzą wierzchołki:,6 3,5 2,7 4,8 Gałęzie w G odpowiadające wierzchołkom podgrafu pustego w G * tworzą skojarzenia maksymalne w G (jest to dodatkowo skojarzenie pełne). 5

6 Metody wyznaczania skojarzeń najliczniejszych Metoda maksymalnego przepływu zastępujemy graf G grafem skierowanym G I następująco: dodajemy 2 wierzchołki s i t. Wierzchołek s łączymy łukami z elementami zbioru W, a wierzchołki zbioru W 2 z wierzchołkiem t. Krawędzie grafu G zastępujemy łukami skierowanymi od W do W 2. Na bazie digrafu G I tworzymy sieć S dla przepływów: gdzie: S = G I, a, c a x W, dla x s 0, dla x s, t W2, dla x t c x, y,, x, y : x s x, y : x W y t y W 2 6

7 7 Metody wyznaczania skojarzeń najliczniejszych G= S t W sieci S znajdujemy przepływ maksymalny. Krawędzie odpowiadające łukom, które będą miały przepływ równy tworzą skojarzenie maksymalne w G.

8 Metody wyznaczania skojarzeń najliczniejszych Poprzednie dwie metody są mało efektywne. Metoda wyznaczania zbioru niezależnych oczek dopuszczalnych: zbiór niezależnych oczek dopuszczalnych zbiór oczek, z których żadne dwa nie występują w tym samym wierszu ani kolumnie (bo każde dwie gałęzie skojarzenia muszą być nieprzyległe); Przydział = zbiór niezależnych oczek dopuszczalnych oznaczonych ; _ W 4 8 W W 2 W 2 graf Königa siatka z oczkami dopuszczalnymi 8

9 Algorytm wyznaczania zbioru niezależnych oczek dopuszczalnych. Wyznaczamy dowolny zbiór niezależnych oczek dopuszczalnych cechujemy je jedynkami. 2. Cechujemy wszystkie wiersze bez (np. - ). Wybieramy kolejno ocechowane wiersze i ich numerami cechujemy nieocechowane kolumny odpowiadające oczkom dopuszczalnym. 3. Wybieramy ocechowaną kolumnę i wiersz, w którym znajduje się, cechujemy numerem kolumny. Postępowanie powtarzamy dla ocechowanych kolumn cechując nieocechowane wiersze. 4. Postępowanie powtarzamy kolejno dla wierszy i kolumn, aż do ocechowania kolumny nie zawierającej. Jeżeli takiej kolumny nie można ocechować, to KONIEC. W ocechowanej kolumnie bez umieszczamy w wierszu wskazanym przez cechę tej kolumny. Z wiersza, w którym umieściliśmy usuwamy z kolumny wskazanej przez cechę tego wiersza. W rozpatrywanej kolumnie umieszczamy w wierszu wskazanym przez cechę kolumny itd., aż dojdziemy do wiersza ocechowanego -. Kasujemy cechy i przechodzimy do pkt. 2. 9

10 Przydziały optymalne Dla danej sieci S = G,, k, gdzie G - graf Königa, k : U R wyznaczyć U * U tak, aby uu k u ekstr U' U uu * ' k u gdzie U zbiór skojarzeń najliczniejszych grafu G 0

11 k I ij : k ij Algorytm wyznaczania przydziału optymalnego Dane: macierz kij, gdzie: rxr r max m,n, I II m W, n W ; k ij I k u, v, dla u W, 0 i j, dla i i m j v j W n II I Algorytm dla max : kij : k ij

12 Algorytm wyznaczania przydziału optymalnego. Od elementów k ij każdego wiersza odejmujemy element minimalny w tym wierszu. Od nowych elementów każdej kolumny odejmujemy element minimalny w tej kolumnie. Oczka zawierające element 0 są oczkami dopuszczalnymi. 2. Wyznaczamy najliczniejszy zbiór oczek dopuszczalnych, niezależnych. Czy liczność tego zbioru = r? TAK - KONIEC NIE wyznaczamy dwa podzbiory wszystkich oczek (na podstawie ostatniego cechowania): A zbiór oczek odpowiadających ocechowanym wierszom i nieocechowanym kolumnom; B zbiór oczek odpowiadających nieocechowanym wierszom i ocechowanym kolumnom. 3. Ze zbioru A wybieramy oczko, któremu odpowiada minimalny element ostatnio przekształconej macierzy. Do wszystkich elementów odpowiadających oczkom ze zbioru B dodajemy ten element minimalny, a od wszystkich elementów odpowiadających elementom (oczkom) zbioru A odejmujemy ten element. Oczka z 0 są oczkami dopuszczalnymi. Przejdź do pkt. 2. 2

13 Przydział minimaksowy Dla danej sieci S = G,, k, gdzie G - graf Königa, k : U R wyznaczyć U * U tak, aby: u max k min max * I I u U U U u U gdzie: U zbiór skojarzeń najliczniejszych grafu G; ku PRZYKŁAD: (tzw. problem wąskiego gardła ). Grupa m pracowników ma wykonać n prac (mn), przy czym prace musza być przyporządkowane wybranym n pracownikom wzajemnie jednoznacznie. Czasy wykonania poszczególnych prac, przez poszczególnych pracowników, są określone za pomocą macierzy k ij. mxn Wszyscy wybrani pracownicy rozpoczynają pracę w tej samej chwili i chodzi o to, aby wszystkie prace zostały zakończone jak najwcześniej. 3

14 Algorytm wyznaczania przydziału minimaksowego Dane: macierz kij utworzona jak poprzednio (dla algorytmu wyznaczania rxr optymalnego przydziału). Zakładając, że wszystkie oczka są dopuszczalne wyznaczamy najliczniejszy zbiór niezależnych oczek dopuszczalnych. 2. Spośród wybranych oczek wyznaczamy element maksymalny i w tablicy k ij wykreślamy wszystkie oczka o elementach równych i większych od wyznaczonego elementu. Oczka nieskreślone są nowymi oczkami dopuszczalnymi. 3. Wyznaczamy najliczniejszy zbiór niezależnych oczek dopuszczalnych. Czy liczność tego zbioru = r? TAK skok do pkt. 2. NIE poprzedni przydział był optymalny. KONIEC. 4

15 Przydział maksyminowy Dla danej sieci S = G,, k, gdzie G graf Königa, k : U R Wyznaczyć U * U tak, aby: min k u max min * I k u uu U I U uu gdzie U zbiór skojarzeń najliczniejszych grafu G; PRZYKŁAD: Niech wartość kij oznacza wydajność pracy, jaką osiąga i ty pracownik przy wykonywaniu j tej pracy. Jeżeli przyjmujemy, że mamy do czynienia z taśmą produkcyjną, to intensywność produkcji będzie determinowana przez stanowisko pracy, na którym występuje minimalna wydajność. Mając zatem obsadzić n stanowisk taśmy produkcyjnej wybranymi n pracownikami ze zbioru m pracowników, należy tak dobrać pracowników do poszczególnych stanowisk, aby zmaksymalizować najmniejszą wydajność pracy, przy danej macierzy wydajności k ij. mxn 5

16 Algorytm wyznaczania przydziału maksyminowego W punkcie 2. algorytmu wyznaczania przydziału minimaksowego zmienić: element maksymalny na element minimalny oraz równych i większych na równych i mniejszych. 6

17 Zakład Badań Operacyjnych i Wspomagania Decyzji Instytut Systemów Informatycznych Wydział Cybernetyki, Wojskowa Akademia Techniczna DZIĘKUJĘ ZA UWAGĘ dr hab. inż. Zbigniew TARAPATA, prof. WAT

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 5: Sieci, drogi ekstremalne w sieciach, analiza złożonych przedsięwzięć (CPM i PERT) dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Kolorowanie grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: -8-9-, p./ Zakład Badań Operacyjnych i Wspomagania

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Ś ć Ś ź Ś Ś ÓŁ Ź Ł Ś ź Ś Ś

Ś ć Ś ź Ś Ś ÓŁ Ź Ł Ś ź Ś Ś Ą Ó Ą Ą Ó Ł Ż Ó Ł Ż Ł Ą Ś ć Ś ź Ś Ś ÓŁ Ź Ł Ś ź Ś Ś Ą ć ź ć Ś ć ć Ą Ó ć ć Ś Ć ć Ć ć ć Ą Ś ź Ą Ą ć ć ć ć ć ć ć ź ź ź ź Ś ź Ą ź ć ć ć Ś Ż Ł ć Ą ź Ł Ń ć Ą ć ć ć ć ć Ń Ł ć ź ć ć ź ć ć ć ć ć ć ć ć ź Ą Ł ć Ą

Bardziej szczegółowo

ź

ź Ń ź Ą ć ź ć Ó ć Ż Ż ÓŁ Ż Ż Ń Ó Ś Ł ź ź Ł Ż Ść ź ź Ż ź Ą ź ź ź Ż ć ź ć ź ź Ą ć ź ź ź ź ź ź ź ź Ż Ż Ą Ż ć ć Ż Ż ć ź ć ć ź Ó ź ć Ż ć Ń ć Ą Ą Ą Ż Ł ź Ż Ź Ż Ą Ń Ą ć ć ź Ś Ó ć ć Ą Ą ć ć Ż Ą Ż ć Ż Ś Ż Ą Ą Ż

Bardziej szczegółowo

Ó ż ż Ść ż ż ć ż ż Ś Ść Ó

Ó ż ż Ść ż ż ć ż ż Ś Ść Ó Ć ż Ą Ą Ó Ł Ś Ł Ó Ś Ó ż ż Ść ż ż ć ż ż Ś Ść Ó Ó Ł ź ć ż Ść ż ż ż ż Ś ż ć ż ż Ś ć Ś Ś ż ć ż ż Ż Ż Ż Ś Ż Ś Ą Ó ź ź Ł Ż ź ź ź ż ż Ż ż ż ć ż Ś ż Ą ź ć ż Ł ć ż ż Ą Ł ż ż ż ź ż ć Ą ż Ś ź ż ż ż ż ć Ź ć ż ć ż

Bardziej szczegółowo

Ś Ą Ą

Ś Ą Ą Ś Ą Ł Ś Ś Ą Ą Ś Ś Ć Ś Ś Ł Ó Ź ź ź ź Ł Ą Ł Ą Ą Ą Ź Ó Ł Ó Ą Ó Ł Ś ŚÓ Ł Ł Ó Ó Ź Ł ź Ó Ó Ó Ó Ń Ó Ś Ó Ś Ą Ó Ś Ó Ą Ą Ś Ą Ą Ś Ś Ó Ó Ą Ą Ś Ó Ó Ą Ś Ą Ą Ć Ó Ó Ą Ą Ó ź Ś ŚÓ Ś Ó Ł Ó Ł Ó Ź Ź Ą Ź Ą Ź Ą Ź Ą ź Ś Ś Ś

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Ł Ł ź ź ź Ł ź ź ź Ą

Ł Ł ź ź ź Ł ź ź ź Ą Ń Ą Ł Ń Ń Ł Ł ź ź ź Ł ź ź ź Ą Ó Ó Ź Ź Ś ź ź Ł Ł ź Ś Ł Ą ź ź Ń Ż Ą Ł Ó Ą Ś ź Ą ź Ą Ś ź Ś Ś Ł Ó Ł ź ź Ł Ł ź Ś Ś Ł ź Ł Ń Ł Ł Ł Ł Ą Ł ź Ś Ż Ł Ą Ą ź ź ź Ż ź Ń Ą Ż ź Ą Ą Ą Ą Ą Ł Ź Ż Ż ź Ą Ż Ą Ą Ń Ż Ż Ź Ą Ń

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

Ą Ź ć ć Ó Ó Ć Ć Ś

Ą Ź ć ć Ó Ó Ć Ć Ś Ł Ł ź Ę Ą Ą Ź ć ć Ó Ó Ć Ć Ś Ł Ą Ą Ó ć ć ć Ś Ś Ó Ś Ó Ó Ó Ó Ó Ó Ó ć Ść Ó Ć ć Ź Ó ć Ó Ó Ó Ś Ź Ó ć ć ć Ł Ć Ź Ó Ó Ś ć Ź ć ć Ć ć ć ć Ź Ó ć Ó Ó Ś Ź Ó Ó Ś Ó ć ć ć Ś Ś Ó Ó Ó ć Ź Ł Ó ć Ś Ś Ó Ó ć Ź ć Ź Ł Ó Ó ć Ź

Bardziej szczegółowo

ł ó ś ó Ę

ł ó ś ó Ę ł ó ÓŁ Ł Ó Ą ć ł ś ł ś Ś ł ł ó ł ł Ś ł ż ł ł ó ł ń ó ń Ę ł Ę ó ł ó ś ó Ę ł ń ł ó ń ł ó ś ó ł ł ł ł ń ó ł Ś ń Ę ó ł ó ś ó ł ó ł ół Ą Ł ł ł Ą ł ó ó ł ż ł ł ł ł ł ł ł ł ó ł ł ł ł ł ł ł ł ół ó ó Ą ó ś ó ł

Bardziej szczegółowo

Ś Ż Ó Ś ż Ó ć ź ż ż Ą

Ś Ż Ó Ś ż Ó ć ź ż ż Ą Ś ż Ż Ż Ś Ż Ó ż ż ż Ą Ś Ż Ó Ś ż Ó ć ź ż ż Ą Ą Ó ż ż Ó Ś Ż Ó ż ż ż Ż Ź ź Ć Ó ż Ż ć Ż ż Ś ć Ś Ś Ż Ą Ż Ż Ó Ż Ż Ś Ż Ż Ź Ż Ż Ż Ę Ś Ż Ż Ś Ó Ż Ż ż Ą Ż Ą Ż Ś Ś ć Ź ć ć Ó ć Ś Ą Ó Ó ć Ż ż Ż Ó ż Ś Ś Ó Ś Ż Ż Ż Ż Ż

Bardziej szczegółowo

ć ć ź ć ć ć Ść ć ź ź ź ć ź Ą ź

ć ć ź ć ć ć Ść ć ź ź ź ć ź Ą ź ć ć ć ź ć ć ć ć ź ć Ż ź ź ć ć ź ć ć ć Ść ć ź ź ź ć ź Ą ź ć ć ć ć ć ć ź ź Ż ć ć ć ć ć Ś ć ć Ź ć Ś ź ć ź ć ź ć ź ć ź Ź ć ć Ś ź ć ć ź Ć ć ź Ó Ż ć ć ź Ś ź ź ć ć ć ź ć ć ć ć ć ć ć ź ź ć ć ć Ś Ć Ó ź ć ź ć ć

Bardziej szczegółowo

Ś ż Ś ć Ś ż Ą ż Ś Ż ż Ż ć ż ż Ż Ż Ś Ś Ś Ś

Ś ż Ś ć Ś ż Ą ż Ś Ż ż Ż ć ż ż Ż Ż Ś Ś Ś Ś Ą ź Ż ż Ś Ś Ź Ź ć Ś Ż Ś ź Ż Ż Ł Ż Ż Ż Ł Ś Ś Ź ć Ś Ś ż Ś ć Ś ż Ą ż Ś Ż ż Ż ć ż ż Ż Ż Ś Ś Ś Ś ć ć Ś Ść Ż Ó ż Ż Ń Ó ć ż ć ć Ść Ś Ś Ś Ż ć ć ż Ż ż Ż ć Ą Ż Ś Ś ż Ż Ó Ś ż ż Ż ż Ó Ż ć ż ż Ż ż ż Ż ć Ź Ź Ś ż Ść

Bardziej szczegółowo

Ł Ł Ó Ś Ż ż Ń Ł

Ł Ł Ó Ś Ż ż Ń Ł Ł Ó Ł Ń Ń Ł Ł Ó Ś Ż ż Ń Ł ÓŁ Ń ź Ł Ż ć ć ż ż Ś ź Ę ź ż ż Ś ż Ę ż Ę Ż ż Ż ż ć ŚÓ ć ż ż Ć Ś ć ż ż Ę ż ż ć ż ż ż ć ż ż ż ć ż ż ż ć ć Ś Ż ć ż ż ż ź Ą ŚĆ Ą ż ż ż ż ż ć ż ż ć ż ć ż ż ż ć Ę ż ż ż ć ż ć Ę Ż ć

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

ń ź ź ń ń ź ć Ń ń Ż ń

ń ź ź ń ń ź ć Ń ń Ż ń Ę Ę ń ń ń ć Ń ć ć Ń ź ń ć ć ź ć ź ń ź ź ń ń ź ć Ń ń Ż ń Ł Ł ń Ę ź ź Ś Ś ź ń ń ź ń ń ń ń Ś ź Ę ź ń Ą ń ć ć ń ć ń Ą ć ź ź Ś ź Ś ń ń ń ń ń ń ć ń ń Ą ć ń Ś ń ń ź ź ź ć ć ń Ł Ę ń ć ń ń ź Ń ź ń Ś Ś Ś ć ń ć ź

Bardziej szczegółowo

ć Ś Ś Ść

ć Ś Ś Ść ć Ś Ś Ść Ś Ł Ź Ść ć ć ć Ść ć Ść Ś Ść ć ć Ś Ó Ś Ś ć ć Ś Ś Ó Ś Ś ć Ą ć Ś Ś Ł ć Ś Ś Ł ć Ą Ść ć Ś Ó Ź ć ć Ś Ś ć ć ć Ś Ść Ść Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś ć Ą Ś Ą Ś Ś Ź Ź ć ć Ś Ę Ź Ł ź Ę Ę Ś Ś Ś Ę Ą Ź ć Ł Ś Ś Ś Ś ć Ś

Bardziej szczegółowo

Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó

Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó Ł ÓŁ Ł Ż Ę Ł Ł Ł Ł ó ż ó ó ó ó ó Ń ó ó ó ó ó ó Ł Ę Ł ó ó Ł ó Ę Ł Ż Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó ó ó ó Ń Ć Ż ó Ż Ę Ś ó ó Ą Ę ż ż ż Ń Ń ż ć Ść ó ŚĆ ó Ę ć ż Ź ŚĆ ź Ę Ś ć ó ó Ś ż ź Ó

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w.

C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w. 1. C e l s p o t k a n i a. C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w., ż e : B y d z b a w i o n y m

Bardziej szczegółowo

ć ć Ł ć Ź ć Ł ź ć Ś ć ć Ż Ł Ż ć ż ć

ć ć Ł ć Ź ć Ł ź ć Ś ć ć Ż Ł Ż ć ż ć Ł Ź Ł Ł ź ź Ż Ż ż Ż ć Ś ż ć ć Ę ć ć Ł ć Ź ć Ł ź ć Ś ć ć Ż Ł Ż ć ż ć Ł ć ć ć ć Ł Ż ć Ł ź ć Ś Ż Ż Ż ż Ż Ż ż Ż Ś Ż Ą Ł Ż ź Ż Ż Ż Ż Ż Ż Ś Ż Ż ż Ż Ż ż ż Ł Ż Ś Ż Ż Ż Ż Ż Ż Ś Ż Ę Ł Ź Ó ż Ę Ł ź Ł Ź Ż ż Ł Ż Ż ż

Bardziej szczegółowo

Ą Ą Ż ć Ż ć Ń Ą

Ą Ą Ż ć Ż ć Ń Ą Ą Ż Ż Ż Ż Ż Ą Ą Ż ć Ż ć Ń Ą Ż ć Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ą Ż Ż Ż Ż Ż Ż Ś ć Ą Ż Ż Ł Ł Ą Ą Ł Ż ć Ż Ż Ż Ż Ż ź ć Ż Ź Ą Ż Ż Ż ź Ą Ł Ż Ż ć Ź Ł Ń ź Ż Ż ź Ł Ż Ą Ń Ż Ż ć Ą Ż ć Ż Ą Ż Ż Ń Ą Ą ć Ą Ą ź Ż Ó Ó

Bardziej szczegółowo

ć

ć Ł Ę Ę Ą ć Ś ć ć ź ź ć ć ź ź ź ć ć ź Ś ć ć ć ć ć Ś ć Ż ć ŚĆ Ć Ż Ś Ż Ś Ż ć Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś ć Ć ć Ć ć Ć ć Ś Ś Ś ć Ć Ż Ć ć ć Ś Ż Ż Ś Ć Ż ć ć ć ć ć Ś Ś Ś ć Ż Ż ć ć Ś Ś ć Ś Ż ć Ś ć ć ć Ż Ć ć ć Ż Ś Ż Ć

Bardziej szczegółowo

ż ć

ż ć Ł Ł ż ć ć ż ć Ą Ł ó ó ć ż ć ć ż ć Ę ć Ę ć ć Ę ć ć ć Ę ż ć ć ć Ś ć Ę Ę ż ż ć ż Ę ć ć Ę ż ż Ę Ł ć ć Ą Ę Ł ć ć ć ż ć Ę Ł Ść Ą Ę Ł ć ć ć ć Ę Ł Ść Ą Ę Ł ć ć ć Ł ć Ę Ę ć ć ć ć Ł Ść ć ć Ę Ę Ł Ś Ą Ś Ś Ł Ą Ą ż

Bardziej szczegółowo

Ń Ł Ł

Ń Ł Ł Ń ź Ż Ń Ł Ł ĄŁ Ź ć ć Ó Ś ć Ź Ś Ż ć Ł ć ć ć Ą Ż ć Ż ć Ż Ą ć Ą Ś Ł Ł Ś Ń Ź ć Ó Ź ź ĄŁ Ą Ł Ą Ó Ś Ź Ż Ń ć Ą Ź ź Ź Ą Ź Ż Ź ź ć Ż Ż Ż Ś Ż ć ź Ć Ś Ź ć Ź ć Ż Ź Ó Ł ÓŁ Ł Ó Ł Ź Ś Ż Ź Ą ź Ę Ą Ś Ź Ź Ę Ś Ń Ż Ź Ł ź

Bardziej szczegółowo

Ł Ą ź ź Ż ź Ź Ó Ó ź Ł

Ł Ą ź ź Ż ź Ź Ó Ó ź Ł Ł Ń Ó Ł Ą ź ź Ż ź Ź Ó Ó ź Ł ź Ń Ł Ź Ś Ł ź Ś Ó Ć Ą Ń Ą ź ź ź Ż ź ź Ź Ć ź ź Ł ź Ó Ą Ą Ł Ą Ą Ś ŚĆ Ł ź ź ź ź Ł ź Ń ź ź ź ź ź ź ź ź Ż Ą Ą Ó Ą Ł Ś Ś ź Ł ź Ł ź ź ź Ź Ź Ś Ź Ź Ó ź ź Ś Ó Ł Ś ź Ł ź ź Ź ź ź ź ź Ś

Bardziej szczegółowo

ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź

ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź ź Ó ć Ę ć Ó ć ć ć ć Ź ć ź ć ć Ź ć ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź ć Ą ć Ą ć ź ć ź ć Ę ć ć Ź ź Ę ć ć ć ć Ę Ę ź ć Ó ć ć ć ć ć ć ć ć ć Ź Ź ć ć ć ź Ę ć ć ć ć Ę Ąć ź Ź ć Ą ć ć

Bardziej szczegółowo

Ć ć ć Ś ć

Ć ć ć Ś ć ź Ę Ę Ę ź ć ć ć Ć ć ć Ś ć ź ć ć ć Ć Ś ź Ś Ć ć Ż ź ć Ż Ś Ł ŚĆ ć ć ć Ć ć Ść ć Ż ć ć ć ć ć ć ć ć Ą ć ć Ś ć Ś ć Ż Ś ć Ó ć Ś ć Ś ć ć ć ć Ś ć ć Ś ć Ć Ż ć Ć ć ć ć ć Ę ć ź ć ć ć ć ć ź ć ć ć Ć ź ć Ż ć ć ć Ś ć Ć

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

ż ć

ż ć Ł Ł Ż ć Ż Ś ć ć Ż ż ć ć Ś Ż ż ć ó ż ż ć Ą Ż ć ć Ż ć ć Ż ć ć ć ć Ż Ż ż Ż Ż ć Ś Ż Ż Ś Ś ż Ś Ż ż ŁĄ ć Ż Ą Ż Ł Ść ć Ść Ż ŁĄ Ś Ż Ą Ś ż Ż Ż ŁĄ Ą Ą Ż Ł ć ć ć ć Ż ć Ż Ż ż ż ż Ż Ż ż Ż ż Ź Ś Ż Ź Ź Ż ć Ż Ż ć ć ć

Bardziej szczegółowo

Ż Ś

Ż Ś Ł Ą ć Ż Ś Ś ć ć Ł Ą ź ź ź ź Ń ź ć ć ć ź ź ć Ń ć Ł ć Ś ć Ś Ś Ą ć Ń ć Ą Ą ć ź ć Ł Ł ź Ą ź ź ź Ł Ł ć ź Ą Ą Ł Ł Ł Ł Ą Ą Ł Ą Ł Ą Ł Ł Ł Ł Ą ć Ł Ł ź Ń Ą ć ć ź Ń ć Ń ź Ł ć ć ć Ń ź ć ć Ń ć ć ć Ś Ć ć Ń ć ć Ł ć

Bardziej szczegółowo

Ł Ł Ł Ś

Ł Ł Ł Ś Ń Ó Ł ź Ł ŚĆ Ł Ą Ł Ł Ł Ś ŚĆ Ż Ź Ż Ż ń ń Ł Ł ź Ł ń Ó Ż Ł Ż ń Ą Ż Ś ń Ą Ź Ą Ś Ś ń Ż ź ń ń Ż ń Ś Ą ń Ż ź Ź Ż ź Ś Ż Ś Ź Ś ź Ż Ż ń Ś ź Ż Ą ź ń ń ź Ż Ą Ż Ś Ź ń Ż ń Ż Ż ń ń Ż ń Ż Ą Ó Ą Ż ń Ó ń ń Ź ź Ą ń Ż Ł

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko

Bardziej szczegółowo

ż ż ż ń ń Ł ń ń ż Ż ń ż ń Ż Ż

ż ż ż ń ń Ł ń ń ż Ż ń ż ń Ż Ż Ó Ń ń ż Ń ż ż ż ń ń Ł ń ń ż Ż ń ż ń Ż Ż ń ć ż ń ż ń ż Ą Ż ć ż ć ć ź ć ć ń Ż Ż ć Ż Ą Ż ć ń ć ć ż ć ć ć ć ć ć ż ć ć ż ć ń ć ć ż ć ć ż ż ć ż ć Ż ż ć Ż Ż Ż ż ż ć Ą ń Ż Ń ń Ą Ą ż Ż ż ż ż ż ż ż ż ż ż ż ż ż ż

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo