Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI"

Transkrypt

1 Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone prograowanie produkcji z wykorzystanie etody dekopozycji Dantziga-Wolfe a Materiał poocniczy część : Przykładowe liniowe odele prograowania produkcji Opracowanie: Kaziierz Duzinkiewicz, dr hab. inż. Robert Piotrowski, dr inż. Toasz Karol Nowak, gr inż. Mariusz Czapliński, gr Inż. Gdańsk, styczeń

2 . Przykład z zakresu planowania produkcji, zaczerpnięty z przeysłu rafineryjnego. Na rysunku.5 przedstawiony jest scheat powiazań ateriałowych pewnego fragentu działalności przykładowego zakładu rafineryjnego. Na scheacie ty zaznaczono już graficznie podział na ożliwe do wyróżnienia działalności. Wyróżniono cztery rodzaje działalności: () działalność zakupu surowców - zilustrowana prostokątai z nuere kolejny surowca i strzałkai skierowanyi do systeu; Syste nuer kolejny surowca Rys... Sybol działalności zakupu surowca () działalność przerobu surowców i półproduktów - zilustrowana prostokątai z wpisanyi wsadai i uzyskai; skrót nazwy dzia³alnoœci nuer kolejny dzia³alnoœci RF BCDRW GSRF GPRF nuer kolejny wsadu REF nuer kolejny uzysku skrót nazwy wsadu skrót nazwy uzysku Rys... Sybol działalności przerobu surowców i półproduktów () działalność agazynowania - zilustrowana trójkątai z wpisany nuere kolejny agazynu; nuer kolejny agazynu Rys... Sybol działalności agazynowania

3 (4) działalność sprzedaży produktów - zilustrowana prostokątai z wpisany nuere kolejny produktu, ze strzałkai od systeu; nuer kolejny produktu Syste Rys..4. Sybol działalności sprzedaży produktów Dokonany podział na działalności wiąże się z ty, do jakich celów będzie służył odel użyty w sforułowaniu zadania prograowania liniowego. W rozważany przykładzie budujey odel z poocą którego chcey określić optyalny plan produkcji dla pewnego okresu T. Proble optyalnego planowania produkcji w przykładowy zakładzie rafineryjny sforułujey następująco: W oparciu o: () scheat produkcyjny (powiązań ateriałowych) zakładu; () wyagania dotyczące jakości produkcji (produktów); () charakterystyki techniczno-technologiczne poszczególnych jednostek produkcyjnych; (4) ewentualne narzucone zadania produkcyjne (ilości i asortyent produktów); (5) przyjęty wskaźnik efektywności działania z - zysk zakładu, należy wyznaczyć takie zadania produkcyjne dla poszczególnych jednostek produkcyjnych, aby zapewniło to uzyskanie aksyalnej wartości wskaźnika z za cały okres planowania. DRW GSDRW GPDRW RN BLDRW BCDRW ONDRW OSDRW 5 6 RF PDDRW 7 GSRF BCDRW GPRF REF KB BLDRW BCDRW BB 5 REF KB BLDRW BCDRW BB 6 REF

4 Rys..5. Przykładowy fragent zakładu rafineryjnego Wykonay teraz kolejne etapy budowy odelu prograowania liniowego, które zostały przedstawione powyżej. Podział zakładu na działalności został już dokonany. Przed przystąpienie do budowy odelu usiy określić zbiór ziennych decyzyjnych. Jako zienne decyzyjne w rozważany przykładzie przyjiey wielkości, które będą określały wielkość zadań produkcyjnych dla poszczególnych działalności w okresie planowania. Roziary działalności zakupu surowców są określone jednoznacznie przez ilości zakupionych surowców. Przyjijy dla tych wielkości następujące oznaczenie: Sj gdzie: j - dwucyfrowy nuer kolejny surowca. np. S Roziary działalności przerobu surowców i półproduktów ogą być scharakteryzowane przez wartości wsadów lub uzysków. Ustaly, że roziary tej działalności będą charakteryzowane przez wartości wsadów. Przyjijy dla tych wielkości następujące oznaczenie: jk np. gdzie: j - dwucyfrowy nuer kolejny działalności danego typu, k - dwucyfrowy nuer kolejny wsadu. Roziary działalności agazynowania charakteryzują jednoznacznie ilości zagazynowanych ediów na koniec okresu planowania. Przyjijy dla tych wielkości następujące oznaczenie: gdzie: j - dwucyfrowy nuer agazynu. Zj np. Z5 W końcu działalność sprzedaży produktów określona jest przez ilości sprzedanych produktów. Przyjijy dla tych wielkości następujące oznaczenie: Pj np. P gdzie: j - dwucyfrowy nuer kolejny produktu. Odpowiednio do podanego sforułowania zagadnienia planowania produkcji, w odelu powinny wystąpić: () zależności reprezentujące powiązania poiędzy poszczególnyi jednostkai produkcyjnyi (działalnościai) oraz powiązania zakładu z otoczenie - tzw. zależności bilansowe; () zależności reprezentujące jakościowe wyagania nakładane na produkty; () zależności reprezentujące warunki technologiczne pracy jednostek produkcyjnych; (4) zależności reprezentujące ograniczenia zdolności przerobowych jednostek (warunki techniczne); (5) zależności reprezentujące narzucone ilościowe zadania produkcyjne; (6) funkcja celu. Przyjijy, że dla zbudowania odelu zebrano następujące dane: Optyalny plan działalności zakładu należy określić dla jednego kwartału, T = 9 dni. Dane o jednostkach produkcyjnych: DRW 4

5 a) wskaźniki uzysków: BLDRW. BCDRW. b) ilość dnia pracy w okresie planowania: 9 c) aksyalna zdolność przerobowa: 7 t/d RN d) technologiczne warunki pracy: nie a. RF a) wskaźniki uzysków: REF.774 b) ilość dnia pracy w okresie planowania: 9 c) aksyalna zdolność przerobowa: 64 t/d BCDRW d) technologiczne warunki pracy: nie a. KB a) wskaźniki uzysków: BB. b) ilość dnia pracy w okresie planowania: 9 c) aksyalna zdolność przerobowa: nie a ograniczeń. Zakład jest w stanie wyekspediować aksyalnie około 87 t/d BB i BB. KB a) wskaźniki uzysków: BB. b) ilość dnia pracy w okresie planowania: 9 c) aksyalna zdolność przerobowa: nie a ograniczeń. Zakład jest w stanie wyekspediować aksyalnie około 87 t/d BB i BB. Wyagania jakościowe dla benzyn: Benzyna Prężność par [kg/c ] Liczba oktanowa dolna górna BB BB Wskaźniki jakościowe koponentów benzyn: Koponent Gęstość Prężność par Liczba oktanowa [t/ ] [kg/c ] BLDRW BCDRW REF Ograniczenia ilościowe na dostawy surowców z zewnątrz: RN nie więcej niż 5 t Wyagania produkcyjne: BB BB nie więcej niż 6 t nie niej niż 5 t Ceny surowców: 5

6 RN.64 jp/t Ceny produktów: BB BB 6. jp/t 4.7 jp/t Można przyjąć, że zbiorniki praktycznie ogą poieścić każdą ilość odpowiedniego ediu. Na przykładach pokażey w jaki sposób ożna forułować poszczególne z typów zależności wyienionych wyżej jako zależności liniowe. Każdej z tych zależności będziey nadawali nazwę w postaci pewnego sybolu. () Zależności bilansowe - wyrażają powiązania iędzy jednostkai produkcyjnyi zakładu oraz powiązania zakładu z otoczenie. Przykład warunku powiązania z otoczenie przez zakup surowca: BS S Z Przykład warunku powiązania poiędzy jednostkai zakładu: BZ. Z Przykład warunku powiązania z otoczenie przez sprzedaż produktu: BP Z5 P () Zależności jakościowe - powinny zapewnić wytwarzanie produktów o wyaganej jakości. Jakość produktu jest określona przez jego wskaźniki jakościowe. W odelu ożey uwzględnić wskaźniki na które ają wpływ zienne decyzyjne. Przyjijy, że w odelu uwzględniy warunki dotyczące benzyn: (a) liczby oktanowej; (b) prężności par dolnej; (c) prężności par górnej. Warunki jakie uszą spełniać wartości wyienionych wskaźników jakości ożna zapisać w forie odpowiednich nierówności: (a) liczba oktanowa Żąda się, aby liczba oktanowa Lj, j-tego produktu była nie niejsza niż LjD Lj LjD (.) gdzie: LjD - żądana wartość liczby oktanowej j-tego produktu. Przyjiey, że liczba oktanowa ieszaniy jest średnią ważoną z wartości liczb oktanowych koponentów. Li i i Gi Lj (.) i i Gi gdzie: j, i - odpowiednio nuer produktu i nuer koponentu, Lj, Li - odpowiednio liczba oktanowa j-tego produktu i i-tego koponentu, Gi - gęstość i-tego koponentu, 6

7 i - ilość i-tego koponentu w ieszaninie. Po podstawieniu (.) do (.) otrzyay: Li LjD i (.) i Gi Przykład warunku jakościowego na liczbę oktanową dla produktu P: LOP (b) prężność par Żąda się, aby prężność par PRj j-tego produktu była nie niejsza niż PRjD i nie większa niż PRjG PRjD PRj PRjG (.4) Przyjiey, że prężność par ieszaniy jest średnią ważoną z wartości prężności par koponentów. Otrzyay wówczas podobnie jak dla liczby oktanowej warunki: PRi PRjD i (.5) i Gi PRi PRjG i (.6) i Gi gdzie: j, i - odpowiednio nuer produktu i nuer koponentu, PRj, PRi - odpowiednio prężność par j-tego produktu i i-tego koponentu, Gi - gęstość i-tego koponentu, i - ilość i-tego koponentu w ieszaninie. Przykład warunków jakościowych dla prężności par dla produktu P: PPDP PPGP () Ograniczenia zdolności przerobowych instalacji Przykłady: MP 49. MPP P P 48 (4) Ograniczenia na ilości surowców i produktów Przykłady: WPS S 5 WPP P 6 (5) Funkcja celu ZYSK. 64S 6. P 4. 7 P z 7

8 Na rys..6 przedstawiona jest tablica odelu liniowego dla rozważanego przykładu. W tablicy tej sybole i oznaczają współczynniki liczbowe odpowiednio ujene i dodatnie, różne od - i.. Postać ateatyczna zadań prograowania liniowego Na podstawie przedstawionego przykładu widać, że w ogólnej postaci sforułowania zadania prograowania liniowego wystąpią następujące składniki: () funkcja celu postaci: Zaksyalizować (lub zinializować) z c x... cj x j... cnxn (.) () zasadnicze warunki ograniczające o jednej z następujących postaci: () warunki nieujeności postaci: a x... a x... a x b, i, k, i N (.) i ij j in n i a x... a x... a x b, i k, k, i N (.) i ij j in n i i ij j in n i a x... a x... a x b, i k,, i N (.4) x j, j, s, s n (.5) Warunki nieujeności nie uszą dotyczyć wszystkich ziennych. Jeżeli s = n, to warunki nieujeności nazyway pełnyi. Na rysunku. przedstawiono acierz ograniczeń zagadnienia prograowania liniowego rozpatrywanego zakładu rafineryjnego. 8

9 O g r a n. Zienne R P S Z Z Z Z Z Z P P r BS - - = BZ = BZ = 4 BZ = 5 BP - - = 6 BP - - = 7 LOP + 8 PPDP 9 PPGP LOP PPDP PPGP MP 49 4 MP 76 5 MPPP 48 6 WPS 5 7 WPP 6 8 WPP 5 9 ZYSK z Rys... Tablica przykładowego zadania prograowania liniowego e l a c j a s t r. 9

Politechnika Gdańska. Wydział Elektrotechniki i Automatyki. Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska. Wydział Elektrotechniki i Automatyki. Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnia Gdańsa Wydział Eletrotechnii i Autoatyi Katedra Inżynierii Systeów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systey ciągłe budowa odeli enoenologicznych z praw zachowania Materiały poocnicze

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA 1. Proble przydziału. Należy przydzielić zadań do wykonawców. Każde zadanie oże być wykonywane przez co najwyżej jednego wykonawcę

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania Metody otyalizacji Metody rograowania nieliniowego II Materiały oocnicze do ćwiczeń laboratoryjnych T7 Oracowanie:

Bardziej szczegółowo

Systemy Sterowania i Wspomagania Decyzji Wykład 2

Systemy Sterowania i Wspomagania Decyzji Wykład 2 Systemy Sterowania i Wspomagania Decyzji mgr inż. Grzegorz Ewald y Politechnika Gdańska, Wydział Elektrotechniki i Automatyki 2011-02-23, Gdańsk System o dynamice zdarzeniowej (ang. Discrete Event System

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Wybór zestawów maszyn do montażu elementów prefabrykowanych z zastosowaniem metody analizy hierarchicznej (AHP)

Wybór zestawów maszyn do montażu elementów prefabrykowanych z zastosowaniem metody analizy hierarchicznej (AHP) Wybór zestawów aszyn do ontażu eleentów prefabrykowanych z zastosowanie etody analizy hierarchicznej (AHP) Daria Biskupska, Ewelina Toaszewska, studentki, Politechnika Warszawska, Wydział Budownictwa Mechaniki

Bardziej szczegółowo

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1 BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi

Bardziej szczegółowo

Elastyczny system VRF

Elastyczny system VRF WYPOSŻENIE INSTLCYJNE URZĄDZENI SETFREE FSXN VRF KOMBI - I -RUROWEGO Elastyczny syste VRF Możliwe jest zaprojektowanie jako syste -rurowy z odzyskie ciepła oraz jako syste -rurowy z popą ciepła Jednostki

Bardziej szczegółowo

KOMPUTEROWY SYSTEM WYBORU DECYZJI WIELOKRYTERIALNEJ

KOMPUTEROWY SYSTEM WYBORU DECYZJI WIELOKRYTERIALNEJ KOMPUTEROWY SYSTEM WYBORU DECYZJI WIELOKRYTERIALNEJ Andrzej Łodziński Katedra Ekonoetrii i Inforatyki SGGW Warszawa Streszczenie: W pracy przedstawiono koputerowy syste wyboru decyzji wielokryterialnej.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Odpowiedzi czasowe ciągłych i dyskretnych systemów dynamicznych Zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Modelowanie matematyczne elementów systemu sterowania (obwody elektryczne, mechaniczne

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7 Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem

Bardziej szczegółowo

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego

Bardziej szczegółowo

Model Heckschera Ohlina

Model Heckschera Ohlina Model eckschera Ohlina gr eszek Wincenciak 4 arca 2004 r. unkcja produkcji Załóży, że gospodarka wytwarza dwa dobra, żywność ood) oraz produkty przeysłowe Manufactures). Produkcja obu dóbr wyaga nakładów

Bardziej szczegółowo

Interpolacja. Interpolacja wykorzystująca wielomian Newtona

Interpolacja. Interpolacja wykorzystująca wielomian Newtona Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS)

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Temat: Platforma Systemowa Wonderware przykład zaawansowanego systemu

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

Ekonomia matematyczna Dynamiczny model wymiany rynkowej (Arrowa-Hurwicza)

Ekonomia matematyczna Dynamiczny model wymiany rynkowej (Arrowa-Hurwicza) Ekonoia ateatyczna -. Dynaiczny odel wyiany rynkowej (Arrowa-Hurwicza) W oencie t 0, na rynku, na który występuje skończona liczba n towarów,,...,n o cenach pt p t,...,p n t operuje agentów,...,. Każdy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Modelowanie matematyczne elementów systemu sterowania (obwody elektryczne, mechaniczne

Bardziej szczegółowo

Model przepływów międzygałęziowych (model Leontiewa)

Model przepływów międzygałęziowych (model Leontiewa) Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport orski Seestr II Ćw. 5 Modulacja AM i Wersja opracowania Marzec 5 Opracowanie: gr inż.

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Studia niestacjonarne Estymacja parametrów modeli, metoda najmniejszych kwadratów.

Bardziej szczegółowo

J4WT Instrukcja instalacji Ref A

J4WT Instrukcja instalacji Ref A www.sofy.co JWT Instrukcja instalacji Ref. 0A Inforacje ogólne Prosiy uważnie i w całości przeczytać niniejszą instrukcję aby w pełni wykorzystać funkcjonalność produktu. Sofy nie ponosi żadnej odpowiedzialności

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

c j x x

c j x x ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 1 Czas realizacji: 3 godziny Maksymalna liczba

Bardziej szczegółowo

CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków

CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków 36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI

Bardziej szczegółowo

SYSTEMY TELEINFORMATYCZNE INSTRUKCJA DO ĆWICZENIA NR 2 MODULACJA AMPLITUDY SYSTEMY TELEINFORMATYCZNE

SYSTEMY TELEINFORMATYCZNE INSTRUKCJA DO ĆWICZENIA NR 2 MODULACJA AMPLITUDY SYSTEMY TELEINFORMATYCZNE SYSTEMY TELEINFORMATYZNE INSTRUKJA DO ĆWIZENIA NR LAB TEMAT: MODULAJA PLITUDY SYSTEMY TELEINFORMATYZNE Przediot: SYSTEMY TELEINFORMATYZNE Katedra Robotyki i Mechatroniki AGH Laboratoriu Modulacja Aplitudy

Bardziej szczegółowo

DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY

DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY Część 2 1. DRGANIA UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY 1 1. 1. DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY 1.1. Drgania własne nietłuione W anaizie drgań rozpatrywać będziey

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

System regałów półkowych HI280 do montażu bezśrubowego Indywidualny i elastyczny sposób składowania drobnych elementów

System regałów półkowych HI280 do montażu bezśrubowego Indywidualny i elastyczny sposób składowania drobnych elementów HI280 Więcej przestrzeni Syste regałów półkowych HI280 do ontażu bezśrubowego Indywidualny i elastyczny sposób składowania drobnych eleentów RÓŻNORODNOŚĆ GWARANTOWANA PRZEZ WYNALAZCĘ REGAŁÓW STALOWYCH

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM

UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM Wojciech Zieliński Katedra Ekonoetrii i Statystyki, SGGW Nowoursynowska 159, PL-0-767 Warszawa wojtekzielinski@statystykainfo Streszczenie: W odelu regresji

Bardziej szczegółowo

O ciężarkach na bloczku z uwzględnieniem masy nici

O ciężarkach na bloczku z uwzględnieniem masy nici 46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,

Bardziej szczegółowo

TEORIA DECYZJE KRÓTKOOKRESOWE

TEORIA DECYZJE KRÓTKOOKRESOWE TEORIA DECYZJE KRÓTKOOKRESOWE 1. Rozwiązywanie problemów decyzji krótkoterminowych Relacje między rozmiarami produkcji, kosztami i zyskiem wykorzystuje się w procesie badania opłacalności różnych wariantów

Bardziej szczegółowo

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L. Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Projektowanie bazy danych przykład

Projektowanie bazy danych przykład Projektowanie bazy danych przykład Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeń wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Pierścienie dysz pojedynczych

Pierścienie dysz pojedynczych Pierścienie dysz pojedynczych Podobne do Listew Dysz Pojedynczych, Pierścienie Dysz Pojedynczych stanowią najłatwiejszy, najbardziej wydajny kosztowo i wytrzyały sposób stworzenia niekończących się linii

Bardziej szczegółowo

Modelowanie produkcji. Drzewo produktu

Modelowanie produkcji. Drzewo produktu Modelowanie produkcji Drzewo produktu Proces produkcji jednego produktu finalnego będziemy przedstawiać graficznie, odzwierciedlając kolejne etapy wytwarzania produktu. Proces produkcji jednego produktu

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

BLACHY TRAPEZOWE sierpień 2005

BLACHY TRAPEZOWE sierpień 2005 BLACHY TRAPEZOWE sierpień 2005 Zawartość niniejszego folderu nie stanowi oferty handlowej w rozuieniu przepisów Kodeksu cywilnego. Inforacje zawarte w niniejszy opracowaniu stanowią jedynie rozwiązania

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania

Bardziej szczegółowo

Wykład 2 - model produkcji input-output (Model 1)

Wykład 2 - model produkcji input-output (Model 1) Wykład 2 - model produkcji input-output (Model 1) 1 Wprowadzenie Celem wykładu jest omówienie (znanego z wcześniejszych zajęć) modelu produkcji typu input-output w postaci pozwalającej na zaprogramowanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Wyznaczanie charakterystyk przepływu cieczy przez przelewy

Wyznaczanie charakterystyk przepływu cieczy przez przelewy Ć w i c z e n i e 1 Wyznaczanie charakterystyk przepływu cieczy przez przelewy 1. Wprowadzenie Cele ćwiczenia jest eksperyentalne wyznaczenie charakterystyk przelewu. Przelew ierniczy, czyli przegroda

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

ThermoTech 74HI Drzwi WINDOWS DOORS FACADES

ThermoTech 74HI Drzwi WINDOWS DOORS FACADES TheroTech 74HI Drzwi PACO QUINTÁ 50 YEARS exlabesa 966-06 Kaye Building Systes sp. z. o. o. ul. Porcelitowa 4 49-30 Tułowice Tel. +48 77 46 00 50 Fax +48 77 4 66 085 www.exlabesa.pl Powielanie w całości

Bardziej szczegółowo

Wykład 2 - model produkcji input-output (Model 1)

Wykład 2 - model produkcji input-output (Model 1) Wykład 2 - model produkcji input-output (Model 1) 1 Wprowadzenie Celem wykładu jest omówienie (znanego z wcześniejszych zaję) modelu produkcji typu input-output w postaci pozwalającej na zaprogramowanie

Bardziej szczegółowo

ThermoTech 74HI WINDOWS DOORS FACADES

ThermoTech 74HI WINDOWS DOORS FACADES TheroTech 74HI PACO QUINTÁ 50 YEARS exlabesa 1966-2016 Kaye Building Systes sp. z. o. o. ul. Porcelitowa 4 49-130 Tułowice Tel. +48 77 46 00 250 Fax +48 77 42 66 085 www.exlabesa.pl Powielanie w całości

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m. Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

CEL PRACY ZAKRES PRACY

CEL PRACY ZAKRES PRACY CEL PRACY. Analiza energetycznych kryteriów zęczenia wieloosiowego pod względe zastosowanych ateriałów, rodzajów obciążenia, wpływu koncentratora naprężenia i zakresu stosowalności dla ałej i dużej liczby

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW

BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Najwyższa moc nominalna na rynku, 14HP. Bezproblemowy i elastyczny montaż. Ekonomiczny i wydajny 04 JEDNOSTKI ZEWNĘTRZNE

Najwyższa moc nominalna na rynku, 14HP. Bezproblemowy i elastyczny montaż. Ekonomiczny i wydajny 04 JEDNOSTKI ZEWNĘTRZNE 04 JEDNOSTKI ZEWNĘTRZNE Ekonoiczny i wydajny Najwyższa oc noinalna na rynku, 14HP Zastosowane technologie pozwalają uzyskać oc noinalną aż 14HP na bardzo ałej powierzchni oraz pracę w szeroki zakresie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS)

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Temat: Platforma Systemowa Wonderware cz. 2 przemysłowa baza danych,

Bardziej szczegółowo

MODELOWANIE SIECI WIELONOŚNIKOWYCH W ZASTOSOWANIACH DO OBLICZEŃ ROZPŁYWOWYCH

MODELOWANIE SIECI WIELONOŚNIKOWYCH W ZASTOSOWANIACH DO OBLICZEŃ ROZPŁYWOWYCH ELEKTRYKA 2014 Zeszyt 4 (232) Rok LX Krzysztof SIEKIERSKI Grupa KĘTY S.A. Maksyilian PRZYGRODZKI Politechnika Śląska w Gliwicach MODELOWANIE SIECI WIELONOŚNIKOWYCH W ZASTOSOWANIACH DO OBLICZEŃ ROZPŁYWOWYCH

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

O KOSZTACH REALIZACJI PLANÓW EKSPERYMENTÓW CZYNNIKOWYCH

O KOSZTACH REALIZACJI PLANÓW EKSPERYMENTÓW CZYNNIKOWYCH Studia Ekonoiczne. Zeszyty Naukowe Uniwersytetu Ekonoicznego w Katowicach ISSN 08-86 Nr 9 05 Magdalena Chielińska Uniwersytet Ekonoiczny w Katowicach Wydział Zarządzania Katedra Statystyki chielinska.agda@gail.co

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Eleenty odelowania ateatycznego Systey kolejkowe. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ RZYKŁAD KOLEJKI N(t) długość kolejki w chwili t T i czas obsługi i-tego klienta Do okienka

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń. Materiały dydatyczne Mateatya Dysretna (Wyład 5 Podstawowe technii zliczania obietów obinatorycznych. Szufladowa zasada Dirichleta, Zasada włączeń i wyłączeń. Szufladowa Zasada Dirichleta. Jest rzeczą

Bardziej szczegółowo

Obwody prądu przemiennego bez liczb zespolonych

Obwody prądu przemiennego bez liczb zespolonych FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

NOWOŚĆ. WehoPipe RC System rur z PE100 Ø25-1600mm do układania nowych i renowacji istniejących rurociągów

NOWOŚĆ. WehoPipe RC System rur z PE100 Ø25-1600mm do układania nowych i renowacji istniejących rurociągów NOWOŚĆ WehoPipe RC Syste rur z PE100 Ø25-1600 do układania nowych i renowacji istniejących rurociągów Techniki układania rur Techniki bezwykopowe coraz częściej zastępują tradycyjne etody wykopowe, ponieważ

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona

Bardziej szczegółowo

(termin zapisu poprzez USOS: 29 maja-4 czerwca 2017)

(termin zapisu poprzez USOS: 29 maja-4 czerwca 2017) Oferta tematyczna seminariów inżynierskich na rok akademicki 2017/2018 dla studentów studiów niestacjonarnych obecnego II roku studiów I stopnia inżynierskich Wydziału Inżynieryjno-Ekonomicznego (termin

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Obliczenia symboliczne w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Laboratorium Pracy systemów elektroenergetycznych Studia STS, 2017/18. Ćwiczenie 8 Wyznaczanie krytycznego czasu trwania zwarcia metodą równych pól

Laboratorium Pracy systemów elektroenergetycznych Studia STS, 2017/18. Ćwiczenie 8 Wyznaczanie krytycznego czasu trwania zwarcia metodą równych pól Laboratoriu Pracy systeów elektroenergetycznych Studia STS, 7/8 Ćwiczenie 8 Wyznaczanie ytycznego czasu trwania zwarcia etodą równych pól Cel ćwiczenia Cele ćwiczenia jest zapoznanie się ze sposobe badania

Bardziej szczegółowo

GRAFICZNA METODA PLANOWANIA ZAJĘĆ

GRAFICZNA METODA PLANOWANIA ZAJĘĆ GRZEGORZ BOCEWICZ KRZYSZTOF BZDYRA GRAFICZNA METODA PLANOWANIA ZAJĘĆ Słowa kluczowe: planowanie zajęć, etoda graficzna szeregowania zadań Keywords: tietabling, graphical ethod of tasks scheduling. WSTĘP

Bardziej szczegółowo

Praca systemów elektroenergetycznych laboratorium NST, 2018/19. Ćwiczenie 8 Wyznaczanie krytycznego czasu trwania zwarcia metodą równych pól

Praca systemów elektroenergetycznych laboratorium NST, 2018/19. Ćwiczenie 8 Wyznaczanie krytycznego czasu trwania zwarcia metodą równych pól Ćwiczenie 8 Wyznaczanie krytycznego czasu trwania zwarcia etodą równych pól Cel ćwiczenia Zapoznanie ze sposobe badania stabilności globalnej systeu elektroenergetycznego etodą równych pól oraz wyznaczenie

Bardziej szczegółowo

2. Szybka transformata Fouriera

2. Szybka transformata Fouriera Szybka transforata Fouriera Wyznaczenie ciągu (Y 0, Y 1,, Y 1 ) przy użyciu DFT wyaga wykonania: nożenia zespolonego ( 1) razy, dodawania zespolonego ( 1) razy, przy założeniu, że wartości ω j są już dane

Bardziej szczegółowo

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji

Bardziej szczegółowo

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład: Programowanie liniowe. 1. Aktywacja polecenia Solver. Do narzędzia Solver można uzyskać dostęp za pomocą polecenia Dane/Analiza/Solver, bądź Narzędzia/Solver (dla Ex 2003). Jeżeli nie można go znaleźć,

Bardziej szczegółowo

- 1 - STATYSTYCZNY ANALIZATOR RULETKI (SAR) Główne obliczenia

- 1 - STATYSTYCZNY ANALIZATOR RULETKI (SAR) Główne obliczenia - 1 - STATYSTYCZNY ANALIZATOR RULETKI (SAR) - 1.2 Główne obliczenia Spis treści: Wstęp - uzasadnienie 1.Wykorzystanie rozkładu Dirichleta. 2.Testowanie koła ruletki. 3.Podstawowe paraetry statystyczne

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo