1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb."

Transkrypt

1 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie między dwoma wierzchołkami w grafie. Aby zbadać istnienie połączenia w grafie podajemy dwa wierzchołki: pierwszy - zwany stanem początkowym, oraz drugi - zwany stanem końcowym. W przypadku przeszukiwania grafów skończonych omawiane algorytmy są równoważne, tzn zbieżność algorytmu przeszukiwania w głąb pociąga za sobą zbieżność algorytmu przeszukiwania wszerz i odwrotnie. Jeżeli przeszukujemy graf nieskończony, algorytm przeszukiwania wszerz jest zbieżny, natomiast algorytm przeszukiwania w głąb nie. Brak zbieżności ma miejsce wówczas, gdy przeszukujemy krawiędź nieskończoną, która nie prowadzi do wierzchołka końcowego. Omawiając algorytm posłużymi się przykładem. Zadamy konkretny graf oraz stany: początkowy i końcowy i opiszemy przebieg działania algorytmu. Niech dany będzie graf: Rysunek 1: Graf do przeszukiwania. Dowolny graf można opisać w postaci listy połączeń. Lista zawiera n linii, gdzie n oznacza liczbę wierzchołków grafu. W i tej linii są umiszczone numery wierzchołków, z którymi i ty wierzchołek jest połączony. Lista połączeń dla rozważanego grafu wygląda następująco: 1. 2, 6, , , , , 8, , 7 1

2 7. 6, , , , , 10 Przeszukiwanie wszerz Przeszukiwanie grafu wszerz polega na odwiedzaniu wszystkich wierzchołków grafu sąsiadujących z wierzchołkiem początkowym, następnie wierzchołków w odległośi 2 od wierzchołka początkowego i tak kolejno. Przy każdym odwiedzeniu należy sprawidzić, czy stan, w którym się znajdujemy jest stanem końcowym. Odwiedzając kolejne wierzchołki należy pamiętać, żeby nie odwiedzać wierzchołków wcześniej odwiedzonych, tzn. każdy wierzchołek możemy odwiedzić dokładnie raz. W przypadku, gdy odwiedzimy wszystkie możliwe wierzchołki i nie znajdziemy stanu końcowego, nie istnieje droga miedzy szukanymi wierzchołkami. Zaletą algorytmu przeszukiwania wszerz jest to, że na pewno nie pominiemy żadnego wierzchołka, zwykle jednak odwiedzamy za dużo wierzchołków, co jest wadą algorytmu. Przeszukiwanie wszerz odbywa się przy użyciu kolejki FIFO (first in first out). Algorytm przebiega następująco: 1. Utwórz kolejkę FIFO 2. Zapisz do kolejki stan początkowy 3. Pobierz z kolejki stan i nazwij go S 4. Jesli (a) S jest poszukiwanym stanem końcowym zwróć SUKCES i zakończ algorytm (b) S=NULL (lista jest pusta) zwróć BRAK ROZWIAZANIA i zakończ algorytm (c) S nie jest poszukiwanym stanem końcowym to generuj wszystkie możliwe stany następujące po S (które można wyprowadzić z S zgodnie z wcześniej ustalonymi regułami a które nie były już rozważane) i zapisz je do kolejki 5. Idz do 3 Zadanie polega na stwierdzeniu, czy w wyżej podanym grafie wierzchołki 1 i 5 są połączone. Wykorzystywane funkcje: make fifo() - funkcja tworzy listę typu FIFO put fifo(x) - funkcja dodaje element x do listy get fifo() - funkcja pobiera elemet z listy Oto przebieg wykonywania algorytmu: 2

3 Numer Krok Wykonywana Stan Odwiedzone etapu algorytmu operacja kolejki wierzchołki 1 1 make fifo() NULL NULL 2 2 put fifo(1) S:=get fifo() (S=1) NULL put fifo(2), put fifo(6), put fifo(9) 5 5 Powrót do S:=get fifo() (S=2) put fifo(3) 8 5 Powrót do S:=get fifo() (S=6) put fifo(7) 11 5 Powrót do S:=get fifo() (S=9) put fifo(10) 14 5 Powrót do S:=get fifo() (S=3) put fifo(4) 17 5 Powrót do S:=get fifo() (S=7) put fifo(8) 20 5 Powrót do S:=get fifo() (S=10) put fifo(11) 23 5 Powrót do S:=get fifo() (S=4) put fifo(5) 26 5 Powrót do S:=get fifo() (S=8) nic 29 5 Powrót do S:=get fifo() (S=11) nic 32 5 Powrót do S:=get fifo() (S=5) NULL NULL return(sukces) 3

4 Przeszukiwanie w głąb Przeszukiwanie grafu w głąb polega na przeszukiwaniu poszczególnych krawędzi grafu. Przechodzimy krawędz najdalej ja się da, jeżeli dana ścieżka nie doprowadziła nas do wierzchołka końcowego wówczas cofamy sie do momentu, z którego możemy pójść inną scieżką. Podobnie jak w przypadku przeszukiwania wszerz, przeszukując graf metodą w głąb pojedynczy wierzchołek może być odwiedziny dokładnie jeden raz. Przy każdym odwiedzeniu należy sprawidzić, czy nie znajdujemy się w stanie końcowym. W przypadku, gdy odwiedzimy wszystkie możliwe wierzchołki i nie znajdziemy stanu końcowego, nie istnieje droga miedzy szukanymi wierzchołkami. Zaletą algorytmu przeszukiwania w głąb jest to, że nie przeszukujemy wszystkich wierzchołków grafu, dodatkowo przeszukując ścieżką prowadzącą bezpośrednio do wierzchołka końcowego możemy odwiedzić minimalną ilość wierzchołków łączących stan początkowy z końcowym. Wadą jest to, że zwykle przszukiwanie odbywa się niewłaściwą scieżką co prowadzi do zabrnięcia w ślepą uliczkę, z której należy się wycofać do wierzchołka, z którego istnieje możliwość pójścia dalej. Przeszukiwanie w głąb odbywa się przy użyciu kolejki LIFO (last in first out) zwanej inaczej STOS. Algorytm przebiega następująco: 1. Utwórz STOS 2. Zapisz na stos stan początkowy 3. Pobierz ze stosu stan i nazwij go S 4. Jesli (a) S jest poszukiwanym stanem końcowym zwróć SUKCES i zakończ algorytm (b) S=NULL (lista jest pusta) zwróć BRAK ROZWIAZANIA i zakończ algorytm (c) S nie jest poszukiwanym stanem końcowym to generuj wszystkie możliwe stany następujące po S (które można wyprowadzić z S zgodnie z wcześniej ustalonymi regułami a które nie były już rozważane) i zapisz je do kolejki 5. Idz do 3 Zadanie polega na stwierdzeniu, czy w wyżej podanym grafie wierzchołki 1 i 5 są połączone. Wykorzystywane funkcje: make stos() - funkcja tworzy STOS put stos(x) - funkcja dodaje element x na stos get stos() - funkcja pobiera elemet ze stosu Oto przebieg wykonywania algorytmu: 4

5 Numer Krok Wykonywana Stan Odwiedzone etapu algorytmu operacja kolejki wierzchołki 1 1 make stos() NULL NULL 2 2 put stos(1) S:=get stos() (S=1) NULL put stos(2), put stos(6), put stos(9) 5 5 Powrót do S:=get stos() (S=9) put stos(10) Powrót do S:=get stos() (S=10) put stos(11) Powrót do S:=get stos() (S=11) put stos(5) Powrót do S:=get stos() (S=5) Wykonywanie punktu (a) return(sukces) W tak realizowanym algorytmie poruszamy się wzdłuż jednej krawędzi ale dla danego wierzchołka odwiedzamy wszystkich jego sąsiadów. Możemy skonstruować algorytm tak, aby z danego wierzchołka generować tylko jeden (wybrany) stan następującey po nim. Wówczas algorytm będzie przebiegał następująco: 1. Utwórz STOS 2. Przyjmij S stan początkowy i zapisz na stos 3. Jesli (a) S jest poszukiwanym stanem końcowym zwróć SUKCES i zakończ algorytm (b) S=NULL (lista jest pusta) zwróć BRAK ROZWIAZANIA i zakończ algorytm (c) S nie jest poszukiwanym stanem końcowym to: 4. Idz do 3 i. jeśli istnieje możliwy stan następujący po S to S przyjmij ten stan i zapisz na stos ii. w przeciwnym przypadku zdejmij element ze stosu, następnie S przyjmij stan ze stosu (nie zdejmując elementu ze stosu) 5

6 Zadanie polega na swierdzeniu, czy wierzchołki 1 i 11 są połączone. Oto przebieg wykonywania algorytmu: Numer Krok Wykonywana Stan Odwiedzone etapu algorytmu operacja stosu wierzchołki 1 1 make stos() NULL NULL 2 2 S=1; put stos(s) Wykonywanie punktu i S=2; put stos(s) 4 4 Powrót do Wykonywanie punktu i S=3; put stos(s) 6 4 Powrót do Wykonywanie punktu i S=4; put stos(s) 8 4 Powrót do Wykonywanie punktu i S=5; put stos(s) 10 4 Powrót do Wykonywanie punktu i S=8; put stos(s) 12 4 Powrót do Wykonywanie punktu i S=7; put stos(s) 14 4 Powrót do Wykonywanie punktu i S=6; put stos(s) 16 4 Powrót do Wykonywanie punktu ii S=get stos() put stos(s) (S=7) 18 4 Powrót do Wykonywanie punktu ii S=get stos() put stos(s) (S=8) 20 4 Powrót do Wykonywanie punktu ii S=get stos(); put stos(s) (S=5) 22 4 Powrót do Wykonywanie punktu i S=11; put stos(s) 24 4 Powrót do Wykonywanie punktu a return(sukces) Taki przebieg algorytmu oprócz odpowiedzi na pytanie czy dwa wierzchołki są ze sobą połączone, generuje drogę prowadzacą od wierzchołka początkowego do wierzchołka końcowego (zwykle nie jest to optymalna droga). Jest to stan stosu w momencie zakończenia działania algorytmu. 6

7 Zadania Zadanie będą polegały na zastosowaniu powyższych algorytmów do sprawdzenia, czy dwa wierzchołki w grafie są ze sobą połączone. Zadanie 1 Napisać program, w oparciu o padane algorytmy, sprawdzającey, czy dwa wierzchołki w grafie są połączone. Zakładamy, ze program wczytuje graf z pliku o podanej w linii poleceń nazwie. Następnie pyta o numery wierzchołków do sprawdzenia. Wierzchołki numerujemy liczbami naturalnymi z przedziału [1, 100]. W pliku pierwsza linia zawiera liczbę wierzchołków, kolejne są listowym opisem grafu. Tak więc linia 2 zawiera sopis wierzchołków, z którymi łączy się wierzchołek 1, linia 3 - spis wierzchołków, z którymi łączy się wierzchołek 2, itd. Kolejne wierzchołki w linii rozdzielone są spacją. Każda linia na końcu zawiera liczbę 0, która oznacza koniec listy wierzchołków sąsiadujących z danym wierzchołkiem. Oto przykładowy plik z danymi dla rozważanego w przykładach grafu: Zadanie 2 Napisać program, w oparciu o podany algorytm, sprawdzający czy możliwe jest przejście w labiryncie od jednego miejsca do drugiego. Zakładamy że program wczytuje labirynt z pliku o podanej w linii poleceń nazwie. Następnie pyta się o współrzędne pola startowego i końcowego. Maksymalny rozmiar planszy to 100 wierszy i 100 kolumn. Każde pole na planszy ma numer z przedziału [0, 15]. Numer ten oznacza jekiego typu jest pole, to znaczy gdzie możemy się z niego przemieścić. Oto dostępne pola (lewe górne ma numer 0, prawe dolne - 15, numeracja wierszami): Rysunek 2: Pola labryntu. W pliku pierwsza linia zawiera liczbę wierszy, druga - liczbę kolumn, kolejne natomiast to opis pól w danym wierszu. Tak więc linia 3 zawiera opis pól wiersza 7

8 1, linia 4 - opis pól wiersza drugiego, itd. Kolejne pola w wierszu rozdzielone są spacjami. Oto przykładowy wygląd labiryntu i odpowiadającego mu pliku z danymi: Rysunek 3: Plansza labiryntu Ilustrowany na ekranie - na przykład pola odwiedzone niech mają inny kolor. W realizacji tekstowej program powinien wyświetlać (lub zapisywać do pliku) współrzędne odwiedzanych pól. Uwaga Jak łatwo zauważyć labirynt można utożsamiać z grafem. Poszczególne pola labiryntu są wierzchołkami, a rodzaj pola jednoznacznie definiuje listę wieszchołków sąsiadujących z rozważanym. Dla powyższego labiryntu plik opisujący go jako graf wygląda następująco:

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Znajdowanie wyjścia z labiryntu

Znajdowanie wyjścia z labiryntu Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas

Bardziej szczegółowo

Instrukcje dla zawodników

Instrukcje dla zawodników Instrukcje dla zawodników Nie otwieraj arkusza z zadaniami dopóki nie zostaniesz o to poproszony. Instrukcje poniżej zostaną ci odczytane i wyjaśnione. 1. Arkusz składa się z 3 zadań. 2. Każde zadanie

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z

Bardziej szczegółowo

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn Klucz Napisać program sprawdzający czy dany klucz pasuje do danego zamka. Dziurka w zamku reprezentowana jest w postaci tablicy zero-jedynkowej i jest spójna. Klucz zakodowany jest jako ciąg par liczb

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria C

Pomorski Czarodziej 2016 Zadania. Kategoria C Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Projekty zaliczeniowe Podstawy Programowania 2012/2013

Projekty zaliczeniowe Podstawy Programowania 2012/2013 Projekty zaliczeniowe Podstawy Programowania 2012/2013 0. Zasady ogólne W skład projektu wchodzą następujące elementy: dokładny opis rozwiązywanego problemu opis słowny rozwiązania problemu wraz z pseudokodami

Bardziej szczegółowo

Pole wielokąta. Wejście. Wyjście. Przykład

Pole wielokąta. Wejście. Wyjście. Przykład Pole wielokąta Liczba punktów: 60 Limit czasu: 1-3s Limit pamięci: 26MB Oblicz pole wielokąta wypukłego. Wielokąt wypukły jest to wielokąt, który dla dowolnych jego dwóch punktów zawiera również odcinek

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

Zadanie 1: Piętnastka

Zadanie 1: Piętnastka Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych zajęć

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 1

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 1 Podstawy programowania, Poniedziałek 30.05.2016, 8-10 Projekt, część 1 1. Zadanie Projekt polega na stworzeniu logicznej gry komputerowej działającej w trybie tekstowym o nazwie Minefield. 2. Cele Celem

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 3

Podstawy programowania, Poniedziałek , 8-10 Projekt, część 3 Podstawy programowania, Poniedziałek 13.05.2015, 8-10 Projekt, część 3 1. Zadanie Projekt polega na stworzeniu logicznej gry komputerowej działającej w trybie tekstowym o nazwie Minefield. 2. Cele Celem

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

5.4. Tworzymy formularze

5.4. Tworzymy formularze 5.4. Tworzymy formularze Zastosowanie formularzy Formularz to obiekt bazy danych, który daje możliwość tworzenia i modyfikacji danych w tabeli lub kwerendzie. Jego wielką zaletą jest umiejętność zautomatyzowania

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

etrader Pekao Podręcznik użytkownika Strumieniowanie Excel

etrader Pekao Podręcznik użytkownika Strumieniowanie Excel etrader Pekao Podręcznik użytkownika Strumieniowanie Excel Spis treści 1. Opis okna... 3 2. Otwieranie okna... 3 3. Zawartość okna... 4 3.1. Definiowanie listy instrumentów... 4 3.2. Modyfikacja lub usunięcie

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Dokumentacja Użytkownika: Panel administracyjny PayBM

Dokumentacja Użytkownika: Panel administracyjny PayBM Blue Media Dokumentacja Użytkownika: Panel administracyjny PayBM Dokumentacja dla Partnerów Blue Media S.A. str.1 Spis treści 1. Logowanie do panelu administracyjnego PayBM... 3 2. Lista transakcji...

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu http://www.jarsoft.poznan.pl/ 1. STRUKTURA PROGRAMU Program EWIDENCJA ODZIEŻY ROBOCZEJ jest aplikacją wspierającą

Bardziej szczegółowo

Algorytm Stentz a D. Przemysław Klęsk Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej

Algorytm Stentz a D. Przemysław Klęsk Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej Algorytm tentz a D Przemysław Klęsk pklesk@wi.zut.edu.pl Katedra Metod ztucznej Inteligencji i Matematyki tosowanej Zadanie W nieznanym terenie (lub znanym tylko częściowo) należy dojść do celu o podanych

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel Wstęp do programowania Zastosowania stosów i kolejek Piotr Chrząstowski-Wachtel FIFO - LIFO Kolejki i stosy służą do przechowywania wartości zbiorów dynamicznych, czyli takich, które powstają przez dodawanie

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy.

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy. 1. Kalkulator czterech działań. Kalkulator czterech działań: +, -, *, \ (bez nawiasów). Wejście: łańcuch znakowy, np. 1+2*3\4-5\2=, -2+4e-1= Liczby mogą być w formacie, np. +1.45, -2, 1e-10. 2. Konwersja

Bardziej szczegółowo

. Podstawy Programowania 2. Algorytmy dfs i bfs. Arkadiusz Chrobot. 2 czerwca 2019

. Podstawy Programowania 2. Algorytmy dfs i bfs. Arkadiusz Chrobot. 2 czerwca 2019 Podstawy Programowania Algorytmy dfs i bfs Arkadiusz Chrobot Zakład Informatyki czerwca 09 / 70 Plan Wstęp Algorytm BFS Podsumowanie / 70 Wstęp Wstęp Istnieje wiele algorytmów związanych z grafami, które

Bardziej szczegółowo

Wykaz stali z projektu.

Wykaz stali z projektu. Wykaz stali z projektu. Program służy do wykonywania wykazu stali z wielu rysunków. Może być również wykorzystywany do sprawdzania poprawności opisu stali na wykonywanym rysunku. Aby korzystać z programu

Bardziej szczegółowo

Notacja RPN. 28 kwietnia wyliczanie i transformacja wyrażeń. Opis został przygotowany przez: Bogdana Kreczmera.

Notacja RPN. 28 kwietnia wyliczanie i transformacja wyrażeń. Opis został przygotowany przez: Bogdana Kreczmera. 1 wyliczanie i transformacja wyrażeń (wersja skrócona) Opis został przygotowany przez: Bogdana Kreczmera 28 kwietnia 2002 Strona 1 z 68 Zakład Podstaw Cybernetyki i Robotyki - trochę historii...............

Bardziej szczegółowo

Przychodnia 0. Stwórz projekt aplikacja konsolowa lub WPF (przemyśl wybór, bo zmiana może być czasochłonna). 1. Stwórz abstrakcyjną klasę Osoba.

Przychodnia 0. Stwórz projekt aplikacja konsolowa lub WPF (przemyśl wybór, bo zmiana może być czasochłonna). 1. Stwórz abstrakcyjną klasę Osoba. Przychodnia 0. Stwórz projekt aplikacja konsolowa lub WPF (przemyśl wybór, bo zmiana może być czasochłonna). 1. Stwórz abstrakcyjną klasę Osoba. W tej klasie wykonaj następujące czynności: a) dodaj pole

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Programowanie aplikacji mobilnych

Programowanie aplikacji mobilnych Katedra Inżynierii Wiedzy laborki 3 Rysunek: Tworzymy projekt Rysunek: Tworzymy projekt Tworzenie GUI szybki sposób - ustawiamy kontrolki tak, aby łącznie uzyskać 9 przycisków typu ToggleButton oraz 3

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 9

Języki formalne i automaty Ćwiczenia 9 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej

Bardziej szczegółowo

Opis programu Konwersja MPF Spis treści

Opis programu Konwersja MPF Spis treści Opis programu Konwersja MPF Spis treści Ogólne informacje o programie...2 Co to jest KonwersjaMPF...2 Okno programu...2 Podstawowe operacje...3 Wczytywanie danych...3 Przegląd wyników...3 Dodawanie widm

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu

Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu Program EWIDENCJA ODZIEŻY ROBOCZEJ INSTRUKCJA UŻYTKOWNIKA Przejdź do strony producenta programu http://www.jarsoft.poznan.pl/ 1. STRUKTURA PROGRAMU Program EWIDENCJA ODZIEŻY ROBOCZEJ jest aplikacją pracującą

Bardziej szczegółowo

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1 ISaGRAF WERSJE 3.4 LUB 3.5 1 1. SFC W PAKIECIE ISAGRAF 1.1. Kroki W pakiecie ISaGRAF użytkownik nie ma możliwości definiowania własnych nazw dla kroków. Z każdym krokiem jest związany tzw. numer odniesienia

Bardziej szczegółowo

Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Animacja. Algorytm DFS Animacja. Notatki. Notatki.

Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Animacja. Algorytm DFS Animacja. Notatki. Notatki. Podstawy Programowania Algorytmy dfs i bfs Arkadiusz Chrobot Zakład Informatyki czerwca 09 / 70 Plan Wstęp Podsumowanie / 70 Wstęp Istnieje wiele algorytmów związanych z grafami, które w skrócie nazywane

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Prezentacja multimedialna MS PowerPoint 2010 (podstawy)

Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Cz. 1. Tworzenie slajdów MS PowerPoint 2010 to najnowsza wersja popularnego programu do tworzenia prezentacji multimedialnych. Wygląd programu w

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej WPROWADZANIE DANYCH DO SYSTEMU INFORMACJI OŚWIATOWEJ Nauczyciel Wersja kwiecień 2013 2 Spis treści ZBIÓR DANYCH O NAUCZYCIELACH...

Bardziej szczegółowo

INSTRUKCJA. SIMPLE.HCM Proces obsługi Kartoteki Pracownika, Kartoteki Przełożonego oraz Raportów kadrowo-płacowych

INSTRUKCJA. SIMPLE.HCM Proces obsługi Kartoteki Pracownika, Kartoteki Przełożonego oraz Raportów kadrowo-płacowych INSTRUKCJA SIMPLE.HCM Proces obsługi Kartoteki Pracownika, Kartoteki Przełożonego oraz Raportów kadrowo-płacowych SPIS TREŚCI 1. KARTOTEKA PRACOWNIKA... 2 2. KARTOTEKA PRZEŁOŻONEGO... 3 3. LISTA RAPORTÓW

Bardziej szczegółowo

System Obsługi Zleceń

System Obsługi Zleceń System Obsługi Zleceń Podręcznik Administratora Atinea Sp. z o.o., ul. Chmielna 5/7, 00-021 Warszawa NIP 521-35-01-160, REGON 141568323, KRS 0000315398 Kapitał zakładowy: 51.000,00zł www.atinea.pl wersja

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska 1 Przykład wyliczania wyrażeń arytmetycznych Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Copyright

Bardziej szczegółowo

1. Przypisy, indeks i spisy.

1. Przypisy, indeks i spisy. 1. Przypisy, indeks i spisy. (Wstaw Odwołanie Przypis dolny - ) (Wstaw Odwołanie Indeks i spisy - ) Przypisy dolne i końcowe w drukowanych dokumentach umożliwiają umieszczanie w dokumencie objaśnień, komentarzy

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może

Bardziej szczegółowo

Dokumentacja Systemu INSEMIK II Podręcznik użytkownika część V Badania buhaja INSEMIK II. Podręcznik użytkownika Moduł: Badania buhaja

Dokumentacja Systemu INSEMIK II Podręcznik użytkownika część V Badania buhaja INSEMIK II. Podręcznik użytkownika Moduł: Badania buhaja INSEMIK II Podręcznik użytkownika Moduł: Badania buhaja ZETO OLSZTYN Sp. z o.o. czerwiec 2009 1 1. Badania buhaja... 3 1.1. Filtr... 3 1.2. Szukaj... 6 1.3. Wydruk... 6 1.4. Karta buhaja... 8 2. Badania...

Bardziej szczegółowo

Dodawanie i modyfikacja atrybutów zbioru

Dodawanie i modyfikacja atrybutów zbioru Dodawanie i modyfikacja atrybutów zbioru Program Moje kolekcje wyposażony został w narzędzia pozwalające na dodawanie, edycję oraz usuwanie atrybutów przypisanych do zbioru kolekcji. Dzięki takiemu rozwiązaniu

Bardziej szczegółowo

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej

Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej Instrukcja użytkownika aplikacji modernizowanego Systemu Informacji Oświatowej WPROWADZANIE DANYCH DO SYSTEMU INFORMACJI OŚWIATOWEJ dla szkół i placówek oświatowych Moduł: DANE ZBIORCZE czerwiec 2013 2

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

UONET+ moduł Dziennik

UONET+ moduł Dziennik UONET+ moduł Dziennik Sporządzanie ocen opisowych i diagnostycznych uczniów z wykorzystaniem schematów oceniania Przewodnik System UONET+ umożliwia sporządzanie ocen opisowych uczniów w oparciu o przygotowany

Bardziej szczegółowo

Na poniższym rysunku widać fragment planszy. Pozycja pionka jest oznaczona przez. Pola, na które może dojść (w jednym ruchu), oznaczone są.

Na poniższym rysunku widać fragment planszy. Pozycja pionka jest oznaczona przez. Pola, na które może dojść (w jednym ruchu), oznaczone są. Dwuwymiarowy Nim VII OIG zawody indywidualne, etap I. 8 XI 0-7 I 0 Dostępna pamięć: 6 MB. Jaś i Małgosia grają w nietypową grę. Odbywa się ona na planszy ograniczonej z dołu i z lewej, a nieskończonej

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04

Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych kolekcji. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych

Bardziej szczegółowo

Bazy danych TERMINOLOGIA

Bazy danych TERMINOLOGIA Bazy danych TERMINOLOGIA Dane Dane są wartościami przechowywanymi w bazie danych. Dane są statyczne w tym sensie, że zachowują swój stan aż do zmodyfikowania ich ręcznie lub przez jakiś automatyczny proces.

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury

Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury Marcin Stępniak Architektura systemów komputerowych Laboratorium 7 Symulator SMS32 Stos, Tablice, Procedury 1. Informacje 1.1. Stos Stos jest strukturą danych, w której dane dokładane są na wierzch stosu

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Ocenianie opisowe Optivum. Jak przygotować i wydrukować świadectwa lub arkusze ocen?

Ocenianie opisowe Optivum. Jak przygotować i wydrukować świadectwa lub arkusze ocen? Ocenianie opisowe Optivum Jak przygotować i wydrukować świadectwa lub arkusze ocen? W programie Ocenianie opisowe Optivum można przygotowywać raporty w oparciu o wcześniej sporządzony szablon dokumentu,

Bardziej szczegółowo

Zawartość. Wstęp. Moduł Rozbiórki. Wstęp Instalacja Konfiguracja Uruchomienie i praca z raportem... 6

Zawartość. Wstęp. Moduł Rozbiórki. Wstęp Instalacja Konfiguracja Uruchomienie i praca z raportem... 6 Zawartość Wstęp... 1 Instalacja... 2 Konfiguracja... 2 Uruchomienie i praca z raportem... 6 Wstęp Rozwiązanie przygotowane z myślą o użytkownikach którzy potrzebują narzędzie do podziału, rozkładu, rozbiórki

Bardziej szczegółowo

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB... MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera

Bardziej szczegółowo

Ćwiczenie 1: Pierwsze kroki

Ćwiczenie 1: Pierwsze kroki Ćwiczenie 1: Pierwsze kroki z programem AutoCAD 2010 1 Przeznaczone dla: nowych użytkowników programu AutoCAD Wymagania wstępne: brak Czas wymagany do wykonania: 15 minut W tym ćwiczeniu Lekcje zawarte

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

System Gokart Timing

System Gokart Timing System Gokart Timing 1 Spis treści System Gokart Timing... 1 Wstęp... 3 Słownik pojęć:... 3 Ogólny opis systemu... 3 Wymagania... 3 Aplikacja pomiarowa... 4 Interfejs... 4 Opis funkcji... 5 Aplikacja do

Bardziej szczegółowo

MATERIAŁY DYDAKTYCZNE. Streszczenie: Z G Łukasz Próchnicki NIP w ramach projektu nr RPMA /15

MATERIAŁY DYDAKTYCZNE. Streszczenie: Z G Łukasz Próchnicki NIP w ramach projektu nr RPMA /15 MATERIAŁY DYDAKTYCZNE w ramach projektu nr RPMA.10.01.01-14-3849/15 Streszczenie: Administracja witryny e-learning NIP 799-174-10-88 Spis treści 1. Ustawienia strony głównej... 2 2. Jak powinna wyglądać

Bardziej szczegółowo

Spis treści. I. Logowanie się do aplikacji tos 3 II. Zmiana hasła 4 III. Panel główny 6 IV. Kontrahenci 8 V. Wystawienie pro formy 11

Spis treści. I. Logowanie się do aplikacji tos 3 II. Zmiana hasła 4 III. Panel główny 6 IV. Kontrahenci 8 V. Wystawienie pro formy 11 1 Spis treści. I. Logowanie się do aplikacji tos 3 II. Zmiana hasła 4 III. Panel główny 6 IV. Kontrahenci 8 V. Wystawienie pro formy 11 2 I. Logowanie się do aplikacji tos. O fakcie udostępnienia tobie

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo