Techniki optymalizacji
|
|
- Amalia Szymczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl
2 Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych = programy ewolucyjne, WNT Warszawa, 1996 E. Aarts, J. Korst Simulated Annealing and Boltzmann Machines A stochastic approach to combinatorial optimization and neural computing, Willey, 1988 F. Glover, M. Laguna Tabu search, Kluwer academic publishers, Boston, 1997 Z. Michalewicz, D.B. Fogel How to Solve It: Modern Heuristics, Springer, 2000
3 O czym ma być ten kurs O trudnych problemach... I o próbach ich rozwiązania... Efektywnie i dobrze
4 Co to znaczy problem Problemy mają ci którzy mają cele Problem istnieje, gdy zauważono różnicę między zastanym, a pożądanym stanem Rozwiązanie problemu polega na przydziale dostępnych zasobów w celu zmniejszenia różnicy między zastanym, a pożądanym stanem
5 Trzy składowe problemu wariant decyzyjny x = [x 1, x 2, x n ] kryterium oceny wariantu (funkcja celu) z = f(x) ograniczenia
6 Dlaczego problemy mogą być trudne do rozwiązania Duża liczba możliwych rozwiązań przeszukanie całej przestrzeni rozwiązań dopuszczalnych w celu znalezienia najlepszego jest nierealne Problem jest b. złożony, użycie modeli uproszczonych i rezultaty są bezużyteczne Funkcja oceny jest obarczona niepewnością Potencjalne rozwiązania mocno ograniczone znalezienie jednego dopuszczalnego jest problemem
7 Dlaczego problemy mogą być trudne do rozwiązania Duża liczba możliwych rozwiązań przeszukanie całej przestrzeni rozwiązań dopuszczalnych w celu znalezienia najlepszego jest nierealne Problem jest b. złożony, użycie modeli uproszczonych i rezultaty są bezużyteczne Funkcja oceny jest obarczona niepewnością Potencjalne rozwiązania mocno ograniczone znalezienie jednego dopuszczalnego jest problemem
8 Modelowanie problemu PROBLEM MODEL ROZWIĄZANIE Model - przybliżenie rzeczywistości Rozwiązanie problem Np. Problem transportowy z nieliniową i nieciągłą funkcją celu Dwa sposoby rozwiązania uprościć model, żeby pasował do tradycyjnego modelu i metody rozwiązania wykorzystać nietradycyjne podejście
9 Dlaczego problemy mogą być trudne do rozwiązania Duża liczba możliwych rozwiązań przeszukanie całej przestrzeni rozwiązań dopuszczalnych w celu znalezienia najlepszego jest nierealne Problem jest b. złożony, użycie modeli uproszczonych i rezultaty są bezużyteczne Funkcja oceny jest obarczona niepewnością Potencjalne rozwiązania mocno ograniczone znalezienie jednego dopuszczalnego jest problemem
10 Dlaczego problemy mogą być trudne do rozwiązania Duża liczba możliwych rozwiązań przeszukanie całej przestrzeni rozwiązań dopuszczalnych w celu znalezienia najlepszego jest nierealne Problem jest b. złożony, użycie modeli uproszczonych i rezultaty są bezużyteczne Funkcja oceny jest obarczona niepewnością Potencjalne rozwiązania mocno ograniczone
11 Dlaczego problemy mogą być trudne do rozwiązania Duża liczba możliwych rozwiązań przeszukanie całej przestrzeni rozwiązań dopuszczalnych w celu znalezienia najlepszego jest nierealne Problem jest b. złożony, użycie modeli uproszczonych i rezultaty są bezużyteczne Funkcja oceny jest obarczona niepewnością Potencjalne rozwiązania mocno ograniczone znalezienie jednego dopuszczalnego jest problemem
12 Duża liczba rozwiązań Problem spełnienia wyrażenia logicznego (SAT) np. problem 100 zmiennych F ( x) = ( x x23 x ) ( x13 x x34)... = TRUE S = (dwie możliwości dla zmiennej, 100 zmiennych)
13 Problemy optymalizacji kombinatorycznej Permutacja jako rozwiązanie N zbiór numerów obiektów Π(i) numer obiektu na pozycji i Π = Π(1), Π(2),..., Π(n) Cel: znaleźć permutację, która minimalizuje f. celu
14 Problem komiwojażera (TSP)
15 Problem komiwojażera (TSP)
16 Problem komiwojażera (TSP)
17 Problem komiwojażera (TSP) S = n! ( n 1)! = 2n 2 Każda trasa wyrażona na 2n różne sposoby, n! sposobów permutacji n liczb 10 miast miast miast
18 Problem kwadratowego przydziału (QAP) Dane Odległości pomiędzy możliwymi lokalizacjami Przepływy pomiędzy czynnościami Przykład lokalizacja personelu medycznego
19 Problem kwadratowego przydziału (QAP) 1 b 13 3 b 12 b 23 2
20 Problem podziału grafu (GPP) Dane: Graf G(V, E) składający się z n wierzchołków V = { v1, v2,... vn} oraz zbiór niezorientowanych łuków E łączących pary wierzchołków.
21 Problem podziału grafu (GPP) Eij macierz połączeń Eij = 1 jeśli vi jest połączony z vj 0 w przeciwnym wypadku Eij = Eji
22 Problem podziału grafu (GPP) Należy dokonać podziału grafu G na dwa rozłączne podzbiory V1 i V2, takie, że V1 V2 = V Liczba połączeń pomiędzy zbiorami wynosi C[ V, V ] 1 2 = i V 1, j V 2 E ij
23 Problem podziału grafu (GPP)
24 Problem marszrutyzacji pojazdów (VRP) Należy odwiedzić wszystkie wierzchołki korzystając ze zbioru pojazdów
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Techniki optymalizacji
Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji
Techniki optymalizacji algorytmy metaheurystyczne
Techniki optymalizacji algorytmy metaheurystyczne Zakres przedmiotu część AJ Wprowadzenie Dokładne i heurystyczne algorytmy optymalizacji Przeszukiwanie lokalne Metaheurystyki oparte na lokalnym przeszukiwaniu
Metody optymalizacji wprowadzenie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski Literatura Motywacje D.E. Goldberg. Algorytmy genetyczne i zastosowania, WNT, 2003 Z. Michalewicz. Algorytmy genetyczne
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Techniki optymalizacji
Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Algorytmy ewolucyjne
Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i
Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)
& Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:
Przeszukiwanie lokalne
Przeszukiwanie lokalne 1. Klasyfikacja algorytmów 2. Przeszukiwanie lokalne 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują rozwiązanie optymalne, 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
METODY OPTYMALIZACJI. Tomasz M. Gwizdałła 2018/19
METODY OPTYMALIZACJI Tomasz M. Gwizdałła 2018/19 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.524b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson)
Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) 1 2 Wprowadzenie Sztandarowy problem optymalizacji kombinatorycznej. Problem NP-trudny. Potrzeba poszukiwania heurystyk. Chętnie
Ewolucja Ró»nicowa - Wprowadzenie
15 grudnia 2016 Klasykacja Algorytmy Ewolucyjne Strategie Ewolucyjne Ewolucja Ró»nicowa Autorzy : Storn i Price [1994-97] Cechy charakterystyczne Algorytm oparty na populacji Osobniki s opisane za pomoc
Optymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Techniki optymalizacji
Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Tomasz M. Gwizdałła 2012/13
METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Wyk lad 2: Algorytmy heurystyczne
Wyk lad 2: Algorytmy heurystyczne Nguyen Hung Son son@mimuw.edu.pl Streszczenie Page 1 of 21 Page 2 of 21 1. Algorytmy aproksymacji Przyk lad: Problem szeregowania zadań: Dane: n zadań wraz z czasem ich
Optymalizacja ciągła
Optymalizacja ciągła 0. Wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 11 Kontakt wojciech.kotlowski@cs.put.poznan.pl http://www.cs.put.poznan.pl/wkotlowski/mp/
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
ALGORYTM HYBRYDOWY WIELOKROTNEGO STARTU DLA ROZWIĄZYWANIA PROBLEMU SEKWENCYJNEGO UPORZĄDKOWANIA
STUDIA INFORMATICA 2014 Volume 35 Number 1 (115) Jacek WIDUCH, Artur KLYTA Politechnika Śląska, Instytut Informatyki ALGORYTM HYBRYDOWY WIELOKROTNEGO STARTU DLA ROZWIĄZYWANIA PROBLEMU SEKWENCYJNEGO UPORZĄDKOWANIA
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
OPTYMALNA ALOKACJA OBIEKTÓW Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH
Stanisław KRENICH 1 Alokacja obiektów Optymalizacja Algorytmy ewolucyjne OPTYMALNA ALOKACJA OBIEKTÓW Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W artykule opisano metodę rozwiązywani zagadnienia optymalnej
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej
Wspomaganie Decyzji Roman Słowiński Zakład Inteligentnyc Systemów Wspomagania Decyzji Instytut Informatyki Politecniki Poznańskiej Roman Słowiński Problem decyzyjny Istnieje cel lub cele do osiągnięcia
[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.
Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe
Modelowanie logistycznych sytuacji decyzyjnych w konwencji zadań programowania matematycznego
Artur Berliński 1 Modelowanie logistycznych sytuacji decyzyjnych w konwencji zadań programowania matematycznego 24 Wstęp O konkurencyjności przedsiębiorstwa decyduje między innymi, efektywna strategia
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
2004 Goodrich, Tamassia
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI INFORMACJE PODSTAWOWE Kontakt pok. 230 C-3, tel.: 071 320 2480 1 Wykład 1 dr inż. Łukasz Jeleń Na podstawie wykładów dr. T. Fevensa e-mail: lukasz.jelen@pwr.edu.pl
Algorytmy heurystyczne w UCB dla DVRP
Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy
2004 Goodrich, Tamassia
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI INFORMACJE PODSTAWOWE Kontakt pok. 230 C-3, tel.: 071 320 4226 Wykład 1 dr inż. Łukasz Jeleń Na podstawie wykładów dr. T. Fevensa e-mail: lukasz.jelen@pwr.edu.pl
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
Algorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
9.4 Czasy przygotowania i dostarczenia
140 9. PODSTAWOWE PROBLEMY JEDNOMASZYNOWE dla każdej pary (i, j) R. Odpowiednie problemy posiadają oznaczenie 1 r j,prec C max,1 prec L max oraz 1 q j,prec C max. Właściwe algorytmy rozwiązywania, o złożoności
Algorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Suma dwóch grafów. Zespolenie dwóch grafów
Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie
Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań
Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych. NP-optymalizacyjny problem Π składa się: zbioru instancji D Π rozpoznawalnego
Wyk lad 3: Klasy P, NP i Algorytmy heurystyczne
Wyk lad 3: Klasy P, NP i Algorytmy heurystyczne Nguyen Hung Son 7 marca 2006 Streszczenie Page 1 of 39 1. Klasa z lożoności PTIME, PSPACE Niech f(n) bedzie rosnac a funkcja wzgledem n, przez TIME(f(n))
Zastosowanie algorytmów heurystycznych do rozwiązywania problemu układania tras pojazdów
Roland Jachimowski 1 Wydział Transportu, Politechnika Warszawska Zastosowanie algorytmów heurystycznych do rozwiązywania problemu układania tras pojazdów 1. WPROWADZENIE Szybki rozwój wymiany handlowej,
PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI ORAZ CIĄGŁĄ PRACĄ MASZYN Wojciech BOŻEJKO, Radosław IDZIKOWSKI, Mieczysław WODECKI
PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI ORAZ CIĄGŁĄ PRACĄ MASZYN Wojciech BOŻEJKO, Radosław IDZIKOWSKI, Mieczysław WODECKI Streszczenie W pracy rozpatrujemy problem przepływowy z przezbrojeniami maszyn pomiędzy
2004 Goodrich, Tamassia
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI INFORMACJE PODSTAWOWE Kontakt pok. 230 C-3, tel.: 071 320 4226 e-mail: lukasz.jelen@pwr.edu.pl www: lukasz.jelen.staff.iiar.pwr.wroc.pl Wykład 1
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Problem Komiwojażera - algorytmy metaheurystyczne
Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman
ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW
Logistyka - nauka Tomasz AMBROZIAK *, Roland JACHIMOWSKI * ALGORYTM KLASTERYZACJI W ZASTOSOWANIU DO PROBLEMU TRASOWANIA POJAZDÓW Streszczenie W artykule scharakteryzowano problematykę klasteryzacji punktów
Przykªady problemów optymalizacji kombinatorycznej
Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:
Harmonogramowanie czynności (1)
Harmonogramowanie czynności (1) dr inż. Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska Październik 2011 dr inż. Mariusz Kaleta Elementy zarządzania produkcją 1 / 50
Model przydziału zasobów do zadań w przedsiębiorstwie transportowym
Mariusz Izdebski 1, Marianna Jacyna 2 Wydział Transportu Politechniki Warszawskiej Model przydziału zasobów do zadań w przedsiębiorstwie transportowym 1. WPROWADZENIE Decyzja przydziału zadań do posiadanych
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
Metody optymalizacji dyskretnej. Metody przybliżone
Metody optymalizacji dyskretnej Metody przybliżone Metody optymalizacji dyskretnej Większość problemów optymalizacji dyskretnej pochodzących z praktyki (szeregowanie, harmonogramowanie, transport, plany
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Metody przeszukiwania lokalnego
Metody przeszukiwania lokalnego Literatura [1] F. Glover, T. Laguna, Tabu search, Kluwer Academic Publishers, 1997. [2] R. Ahuja, O. Ergun, J. Orlin, A. Punnen, A survey of very large-scale neighborhood
9. Schematy aproksymacyjne
9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Optymalizacja dystrybucji w zadaniach transportowo - produkcyjnych
MICHLOWICZ Edward 1 SMOLIŃSKA Katarzyna 2 ZWOLIŃSKA Bożena 3 Optymalizacja dystrybucji w zadaniach transportowo - produkcyjnych WSTĘP Zadaniem dystrybucji jest dostarczenie nabywcom finalnym pożądanych
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań
Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań 42 Dr inż Michał Podolski Politechnika Wrocławska 1 Wprowadzenie Harmonogramowanie
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Zaawansowane programowanie
Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach
Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego
Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem
MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej
Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4
Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4 Paweł Paduch Politechnika Świętokrzyska 5 czerwca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4 1 z 51 Plan wykładu Plan
MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...
MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa