MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem"

Transkrypt

1 MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do tego zbioru. Minimalne drzewo rozpinające to drzewo wybrane spośród wszystkich istniejących drzew rozpinających, dla którego łączna długość krawędzi jest najmniejsza. 2. Najkrótsza droga (shortest path) między dowolnie wybranymi wierzchołkami w sieci to taki zbiór krawędzi łączących te wierzchołki, dla których suma długości jest najmniejsza.. Zagadnienie maksymalnego przepływu (maximal flow problem) wierzchołek początkowy zwany jest źródłem, wierzchołek końcowy zwany jest ujściem. Każda krawędź grafu opisana jest dwoma liczbami, charakteryzującymi przepustowości krawędzi. Należy zaplanować taki przepływ między źródłem a ujściem, aby jego wielkość była największa.

2 ALGORYTM KONSTRUKCJI MINIMALNEGO DRZEWA ROZPINAJĄCEGO Założenia modelu: 1. Liczba węzłów wynosi n. 2. Dane są odległości pomiędzy węzłami. Krawędzie/łuki dwukierunkowe. Cel: Znalezienie zbioru krawędzi, które łączą wszystkie węzły i których łączna długość jest najmniejsza. Przykład 1: Zadanie polega na opracowaniu regionalnej sieci komputerowej łączącej 5 komputerów satelitarnych z serwerem w taki sposób, aby długość linii łączącej komputery była jak najmniejsza. Rozważa się połączenia bezpośrednie wybranych komputerów z serwerem a także połączenia komputerów satelitarnych z serwerem za pośrednictwem innych komputerów satelitarnych.

3 Rysunek 1. Rozważana sieć połączeń komputerów systemu regionalnego. Węzeł 1. oznacza główny serwer systemu. Nad krawędziami podano długość łącza w km.

4 Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła Tabela 1. Odległości w km pomiędzy węzłami sieci. Znak - na głównej przekątnej tabeli oznacza trasy nie brane pod uwagę. M oznacza brak połączenia.

5 Krok 1. Wybieramy w sieci dowolny węzeł i cechujemy go jako połączony (np. oznaczając odpowiadający wiersz tabeli odległości między węzłami). Krok 2. Wykreślamy w tabeli kolumnę odpowiadającą połączonemu węzłowi. Krok. We wszystkich wierszach odpowiadających węzłom połączonym znajdujemy wartość najmniejszą w niewykreślonych kolumnach i oznaczamy to połączenie jako wybrane (zaznaczając np. okręgiem). Krok. Odpowiadający numerowi wybranej kolumny węzeł cechujemy jako połączony. Wracamy do kroku 2., dopóki wszystkie węzły nie zostaną połączone. Krok 5. Minimalne drzewo rozpinające jest utworzone przez zidentyfikowane połączenia; całkowita długość połączeń jest równa sumie długości wybranych krawędzi.

6 W Przykładzie 1. zastosowano następujące etapy postępowania: Jako pierwszy połączono węzeł 1. i wykreślono kolumnę 1. Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła W wierszu 1. znaleziono minimalną odległość równą 20 odpowiadającą połączeniu 1-2.

7 Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła Węzeł 2. oznaczono jako połączony i wykreślono kolumnę 2. W wierszach 1. i 2. znaleziono minimalną odległość równą 0, która odpowiada połączeniu 1-.

8 Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła Węzeł. oznaczono jako połączony i wykreślono kolumnę. W wierszach 1., 2.,. w niewykreślonych kolumnach (tj.., 5. i 6.) znaleziono minimalną odległość równą 10 odpowiadającą połączeniu -.

9 Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła Węzeł. oznaczono jako połączony i wykreślono kolumnę. W wierszach 1., 2.,. i. w kolumnach niewykreślonych znaleziono minimalną odległość równą 20 odpowiadającą połączeniu -6.

10 Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła Węzeł 6. oznaczono jako połączony i wykreślono kolumnę 6. W jedynej pozostałej niewykreślonej kolumnie 5. znaleziono minimalną odległość równą 0 odpowiadającą połączeniu -5.

11 Odległość w Do węzła km M M 0 M 0 M M 10 - M M M Od węzła Węzeł 5. oznaczono jako połączony i wykreślono kolumnę 5. Koniec postępowania wszystkie węzły zostały połączone.

12 Minimalne drzewo: 1-2, 1-, -, -6, -5 Długość łączy: = 110 km

13 Zadania do rozwiązania Zad. 1 Skarb państwa zakupił ziemię z przeznaczeniem na park krajobrazowy oraz obiekty rekreacyjne. Planiści wytypowali najlepsze lokalizacje dla różnych planowanych obiektów. Lokalizacje te reprezentowane są przez węzły sieci. Łuki sieci odpowiadają możliwym alternatywnym wariantom ścieżek/dróg w parku. Należy zaplanować połączenia obiektów w taki sposób, aby zminimalizować łączną długość niezbędnych dróg w kilometrach i jednocześnie zapewnić dostęp do wszystkich obiektów w parku

14 Zad.2 W dużej firmie produkcyjnej planowany jest nowy system kontroli jakości. Z różnych lokalizacji w fabryce dostarczane będą próbki produktów do laboratorium celem przeprowadzenia badań jakości. Podjęto decyzję o budowie systemu poczty pneumatycznej, aby usprawnić proces dostarczania próbek różnych produktów do laboratorium z różnych miejsc produkcyjnych. Prezentowany graf pokazuje sieć miejsc produkcji skąd docierają próbki oraz laboratorium (węzły). Łuki przedstawiają możliwe drogi poczty pneumatycznej. Zaplanuj połączenia poczty pneumatycznej i określ ich minimalną łączną długość. Odległości między węzłami podano w setkach metrów. Laboratorium

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Rozdział 8 PROGRAMOWANIE SIECIOWE

Rozdział 8 PROGRAMOWANIE SIECIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 8 PROGRAMOWANIE SIECIOWE 8.2. Ćwiczenia komputerowe Ćwiczenie 8.1 Wykorzystując

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS

Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS Problem straŝaka w drzewach Agnieszka Skorupka Matematyka Stosowana FTiMS Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski

Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Informatyka w szkole - algorytm Dijkstry dla każdego Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Problem 1: Labirynt Źródło: www.dla-dzieci.ugu.pl Problem : Wilk, owca i kapusta Źródło:

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Zadanie niezbilansowane. Gliwice 1

Zadanie niezbilansowane. Gliwice 1 Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Rozdział 8 PROGRAMOWANIE SIECIOWE

Rozdział 8 PROGRAMOWANIE SIECIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział PROGRAMOWANIE SIECIOWE.. ZADANIA Rozwiązać poniższe zadania, wykorzystując

Bardziej szczegółowo

Przetwarzanie równoległesprzęt. Rafał Walkowiak Wybór

Przetwarzanie równoległesprzęt. Rafał Walkowiak Wybór Przetwarzanie równoległesprzęt 2 Rafał Walkowiak Wybór 17.01.2015 1 1 Sieci połączeń komputerów równoległych (1) Zadanie: przesyłanie danych pomiędzy węzłami przetwarzającymi, pomiędzy pamięcią a węzłami

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku

DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

7. Teoria drzew - spinanie i przeszukiwanie

7. Teoria drzew - spinanie i przeszukiwanie 7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska. Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Algorytm chińskiego listonosza Katarzyna Ignaszewska SPI51. Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił.

Algorytm chińskiego listonosza Katarzyna Ignaszewska SPI51. Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił. Scenariusz lekcji Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił. W roku 1962 chioski matematyk Mei-Ko Kwan zaproponował następujący problem: Listonosz roznosząc

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Problem 1 [Sieć telekomunikacyjna routing]

Problem 1 [Sieć telekomunikacyjna routing] Problem 1 [Sieć telekomunikacyjna routing] Sieć z komutacją pakietów (packet switched newtork) z dwoma różnymi klasami danych: A packet switched network is a digital communications network that groups

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

METODY OBLICZENIOWE OPTYMALIZACJI zadania

METODY OBLICZENIOWE OPTYMALIZACJI zadania METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed

Bardziej szczegółowo

Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.

Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach. Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Implementacja STP Cisco

Implementacja STP Cisco Implementacja STP Cisco Nadmiarowość jest bardzo ważną i pożądaną cechą sieci. Dzięki niej sieci uzyskują odporność na awarie. Nadmiarowość topologii zapobiega przestojom lub utracie dostępu do zasobów.

Bardziej szczegółowo

Technologie informacyjne (5) Zdzisław Szyjewski

Technologie informacyjne (5) Zdzisław Szyjewski Technologie informacyjne (5) Zdzisław Szyjewski Technologie informacyjne Technologie pracy z komputerem Funkcje systemu operacyjnego Przykłady systemów operacyjnych Zarządzanie pamięcią Zarządzanie danymi

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Modele sieciowe. Badania operacyjne Wykład 6. prof. Joanna Józefowska

Modele sieciowe. Badania operacyjne Wykład 6. prof. Joanna Józefowska Modele sieciowe Badania operacyjne Wykład 6 6-6- 6-6- Plan wykładu Zarządzanie złożonymi przedsięwzięciami Metoda ścieżki krytycznej Metoda PERT Projekty z ograniczonymi zasobami Modele z kontrolą czasu

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Konspekt. 15 października Wykład III (16 października 2014 r.): optymalizacja kombinatoryczna na grafach (metody sieciowe)

Konspekt. 15 października Wykład III (16 października 2014 r.): optymalizacja kombinatoryczna na grafach (metody sieciowe) Konspekt 15 października 2014 1 Wykład III (16 października 2014 r.): optymalizacja kombinatoryczna na grafach (metody sieciowe) 1.1 Przykładowe problemy optymalizacji kombinatorycznej na grafach 1. Optymalizacja

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 23 KWIETNIA 2016 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Na rysunku przedstawiony

Bardziej szczegółowo

Matematyka Dyskretna - zadania

Matematyka Dyskretna - zadania zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, 10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

asix na łączach RAS konfiguracja

asix na łączach RAS konfiguracja NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI asix na łączach RAS konfiguracja Pomoc techniczna Dok. Nr PLP0004 Wersja: 23-11-2005 ASKOM to zastrzeżony znak firmy ASKOM Sp. z o. o., Gliwice. Inne występujące

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył

Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

Podstawy działania sieci

Podstawy działania sieci Podstawy działania sieci Topologie, adresy, serwery i protokoły 26 marca 2013 Mariusz Różycki 1 Początek Internetu Pierwszy komputer lata 40. XX wieku Pierwsza sieć 29 października 1969 Advanced Research

Bardziej szczegółowo

Routing. mgr inż. Krzysztof Szałajko

Routing. mgr inż. Krzysztof Szałajko Routing mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci Wersja 1.0

Bardziej szczegółowo